Display options
Share it on

Front Microbiol. 2016 Mar 30;7:387. doi: 10.3389/fmicb.2016.00387. eCollection 2016.

Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

Frontiers in microbiology

Stefano Romano, Antonio Fernàndez-Guerra, F Jerry Reen, Frank O Glöckner, Susan P Crowley, Orla O'Sullivan, Paul D Cotter, Claire Adams, Alan D W Dobson, Fergal O'Gara

Affiliations

  1. BIOMERIT Research Centre, University College Cork Cork, Ireland.
  2. Oxford e-Research Centre, University of OxfordOxford, UK; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine MicrobiologyBremen, Germany.
  3. Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine MicrobiologyBremen, Germany; Jacobs University Bremen gGmbHBremen, Germany.
  4. Teagasc Food Research Centre Fermoy, Ireland.
  5. Teagasc Food Research CentreFermoy, Ireland; APC Microbiome InstituteCork, Ireland.
  6. School of Microbiology, University College CorkCork, Ireland; Environmental Research Institute, University College CorkCork, Ireland.
  7. BIOMERIT Research Centre, University College CorkCork, Ireland; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin UniversityPerth, WA, Australia.

PMID: 27065959 PMCID: PMC4811931 DOI: 10.3389/fmicb.2016.00387

Abstract

Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P. axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny.

Keywords: Pseudovibrio; comparative genomics; core-genome; phylogenesis; secretion systems; symbiosis; toxins

References

  1. Bioinformatics. 2012 Jul 15;28(14):1823-9 - PubMed
  2. Environ Microbiol. 2009 Jun;11(6):1348-57 - PubMed
  3. PLoS One. 2013;8(3):e58173 - PubMed
  4. Bioinformatics. 2011 Mar 15;27(6):777-84 - PubMed
  5. Genome Biol. 2007;8(4):R59 - PubMed
  6. Nucleic Acids Res. 2004 Feb 25;32(4):1363-71 - PubMed
  7. Cell. 2006 Aug 11;126(3):453-65 - PubMed
  8. Nat Rev Mol Cell Biol. 2002 Oct;3(10):742-52 - PubMed
  9. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  10. Nat Protoc. 2015 Jun;10(6):845-58 - PubMed
  11. Cell Host Microbe. 2007 Nov 15;2(5):291-4 - PubMed
  12. Proc Int Conf Intell Syst Mol Biol. 1998;6:175-82 - PubMed
  13. Biochim Biophys Acta. 2014 Aug;1843(8):1592-611 - PubMed
  14. FEMS Microbiol Rev. 2010 Nov;34(6):1076-112 - PubMed
  15. Nat Rev Microbiol. 2011 Nov 08;10(1):13-26 - PubMed
  16. Bioinformatics. 2014 Jul 15;30(14):2068-9 - PubMed
  17. BMC Microbiol. 2005 Oct 07;5:58 - PubMed
  18. Antonie Van Leeuwenhoek. 2015 Jul;108(1):127-32 - PubMed
  19. PLoS One. 2015 Mar 31;10(3):e0121675 - PubMed
  20. Mol Microbiol. 2006 Jul;61(2):368-82 - PubMed
  21. Nat Rev Microbiol. 2014 Feb;12(2):137-48 - PubMed
  22. Mol Biol Evol. 2012 Jun;29(6):1695-701 - PubMed
  23. Genome Res. 2008 May;18(5):821-9 - PubMed
  24. Mol Biol Evol. 2013 May;30(5):1218-23 - PubMed
  25. Annu Rev Entomol. 2010;55:247-66 - PubMed
  26. FEMS Microbiol Lett. 2003 Jul 15;224(1):1-15 - PubMed
  27. Cell Host Microbe. 2014 Jul 9;16(1):5-6 - PubMed
  28. ISME J. 2011 Jan;5(1):61-70 - PubMed
  29. BMC Genomics. 2009 Mar 12;10:104 - PubMed
  30. J Biol Chem. 2013 Sep 13;288(37):26616-24 - PubMed
  31. Genome Biol Evol. 2015 Oct 31;7(11):3022-32 - PubMed
  32. Res Microbiol. 2013 Jul-Aug;164(6):620-39 - PubMed
  33. Bioinformatics. 2014 May 1;30(9):1236-40 - PubMed
  34. PLoS Comput Biol. 2008 May 30;4(5):e1000069 - PubMed
  35. Mol Microbiol. 1997 Sep;25(6):1011-22 - PubMed
  36. EMBO J. 2002 Oct 1;21(19):5069-78 - PubMed
  37. Appl Environ Microbiol. 2015 May 15;81(10):3518-28 - PubMed
  38. Nat Methods. 2011 Sep 29;8(10):785-6 - PubMed
  39. Environ Microbiol. 2015 Jul;17(7):2196-202 - PubMed
  40. ISME J. 2014 Apr;8(4):908-24 - PubMed
  41. Mar Environ Res. 2015 Mar;104:20-30 - PubMed
  42. FASEB J. 1993 Sep;7(12):1115-23 - PubMed
  43. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1275-80 - PubMed
  44. Nat Rev Microbiol. 2012 Sep;10(9):641-54 - PubMed
  45. Nat Rev Microbiol. 2015 Jun;13(6):343-59 - PubMed
  46. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 - PubMed
  47. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  48. Nature. 2013 Apr 25;496(7446):508-12 - PubMed
  49. Nat Rev Microbiol. 2003 Nov;1(2):137-49 - PubMed
  50. Brief Bioinform. 2013 Mar;14(2):213-24 - PubMed
  51. Nucleic Acids Res. 2011 Jun;39(11):4532-52 - PubMed
  52. Environ Microbiol Rep. 2015 Apr;7(2):194-203 - PubMed
  53. Cell Host Microbe. 2014 Jul 9;16(1):94-104 - PubMed
  54. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 - PubMed
  55. Microb Ecol. 2008 Jan;55(1):94-106 - PubMed
  56. Bioinformatics. 2014 May 1;30(9):1312-3 - PubMed
  57. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3160-5 - PubMed
  58. Microbes Infect. 2010 May;12(5):346-58 - PubMed
  59. Infect Immun. 1986 Sep;53(3):522-9 - PubMed
  60. Mol Biol Cell. 2010 Dec;21(24):4300-5 - PubMed
  61. PLoS One. 2012;7(1):e30288 - PubMed
  62. Curr Microbiol. 2014 Jan;68(1):38-46 - PubMed
  63. J Biol Chem. 2014 Feb 28;289(9):5876-88 - PubMed
  64. Environ Microbiol. 2013 Jul;15(7):2095-113 - PubMed
  65. Appl Environ Microbiol. 2013 Dec;79(24):7696-701 - PubMed
  66. Nucleic Acids Res. 2013 Jan;41(Database issue):D387-95 - PubMed
  67. Bioinformatics. 2011 Apr 15;27(8):1164-5 - PubMed
  68. Genome Biol. 2007;8(5):R71 - PubMed
  69. BMC Microbiol. 2012 Sep 02;12:188 - PubMed
  70. Appl Environ Microbiol. 2006 May;72(5):3724-32 - PubMed
  71. BMC Genomics. 2015 May 06;16:349 - PubMed
  72. PLoS Pathog. 2009 Apr;5(4):e1000376 - PubMed
  73. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W23-8 - PubMed
  74. J Bacteriol. 2004 Dec;186(23):8058-65 - PubMed
  75. Cell Host Microbe. 2012 May 17;11(5):538-49 - PubMed
  76. Bioinformatics. 2010 Mar 1;26(5):680-2 - PubMed
  77. Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 - PubMed
  78. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14057-9 - PubMed
  79. J Biol Inorg Chem. 2002 Jun;7(6):600-10 - PubMed
  80. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31 - PubMed
  81. Nature. 2010 Nov 18;468(7322):439-42 - PubMed
  82. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  83. J Appl Microbiol. 2011 Jun;110(6):1495-508 - PubMed
  84. Bioinformatics. 2001 Sep;17(9):849-50 - PubMed
  85. Genome Res. 2015 Jul;25(7):1043-55 - PubMed
  86. Microbiol Mol Biol Rev. 2007 Jun;71(2):295-347 - PubMed
  87. Nucleic Acids Res. 2013 Jan;41(Database issue):D660-5 - PubMed
  88. J Comput Biol. 2012 May;19(5):455-77 - PubMed
  89. PLoS One. 2014 May 02;9(5):e96038 - PubMed
  90. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  91. Integr Comp Biol. 2003 Apr;43(2):281-92 - PubMed
  92. Bioinformatics. 2011 Apr 1;27(7):1017-8 - PubMed
  93. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17020-4 - PubMed
  94. J Struct Biol. 1998;122(1-2):236-46 - PubMed
  95. Mol Microbiol. 2001 Oct;42(2):279-92 - PubMed
  96. Nature. 2014 Apr 3;508(7494):61-5 - PubMed
  97. Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 - PubMed
  98. BMC Bioinformatics. 2010 Sep 27;11:485 - PubMed
  99. Source Code Biol Med. 2011 Jun 21;6:11 - PubMed

Publication Types