Display options
Share it on

J Cachexia Sarcopenia Muscle. 2016 Mar;7(1):79-89. doi: 10.1002/jcsm.12036. Epub 2015 May 11.

The melanocortin receptor type 3 agonist d-Trp(8)-γMSH decreases inflammation and muscle wasting in arthritic rats.

Journal of cachexia, sarcopenia and muscle

Ana Belen Gómez-SanMiguel, Ana Isabel Martín, María Paz Nieto-Bona, Carmen Fernández-Galaz, María Ángeles Villanúa, Asunción López-Calderón

Affiliations

  1. Department of Physiology, Faculty of Medicine Complutense University Madrid Spain.
  2. Department of Basic Sciences in Health, Faculty of Health Sciences Rey Juan Carlos University Madrid Spain.

PMID: 27066320 PMCID: PMC4799854 DOI: 10.1002/jcsm.12036

Abstract

BACKGROUND: Chronic inflammatory diseases induce cachexia that increases mortality and morbidity of the illness. Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that is associated with body weight loss and muscle wasting. Alpha-melanocyte stimulating hormone has an anti-inflammatory effect in arthritic rats and decreases muscle wasting. The aim of this work was to elucidate whether the anti-cachectic action of alpha-melanocyte stimulating hormone is mediated by the melanocortin receptor type 3 pathway.

METHODS: Arthritis was induced in male Wistar rats by intradermal injection of Freund's adjuvant, and 6 days afterwards, arthritic rats were injected with the selective melanocortin receptor type 3 agonist d-Trp(8)-gammaMSH ( d-Trp(8)-γMSH) 500 µg/kg subcutaneously. or saline twice a day, for 10 days.

RESULTS: d-Trp(8)-γMSH decreased the external signs of inflammation and body weight loss, but it was not able to modify the anorexigenic effect of arthritis or the increase in hypothalamic cyclooxygenase-2 (COX-2) expression. In contrast, d-Trp(8)-γMSH prevented arthritis-induced increase in hypothalamic IL-1β and serum corticosterone levels and the decrease in serum IGF-I levels. d-Trp(8)-γMSH treatment also prevented arthritis-induced NF-kB(p65) phosphorylation and tumour necrosis factor-α mRNA increase in the gastrocnemius. d-Trp(8)-γMSH administration to arthritic rats increased gastrocnemius mass, its cross-sectional area, and mean fast fibre area. Those effects of d-Trp(8)-γMSH were associated with a decreased expression of atrogin-1 and muscle ring-finger protein-1 in the gastrocnemius. In rats treated with saline, arthritis increased the expression of autophagy marker genes LC3b, Bnip-3, and Gabarap1 as well as the conversion of LC3b I to LC3b II by lipidation in the gastrocnemius. d-Trp(8)-γMSH decreased gastrocnemius LC3b, Bnip-3, and Gabarap1 mRNA expression and prevented the increase in LC3b II in arthritic rats.

CONCLUSION: These data suggest that d-Trp(8)-γMSH administration prevents the effect of arthritis on corticosterone and insulin-like growth factor-I serum levels and decreases muscle wasting, by down-regulating atrogenes and autophagy through modifying the NF-kB(p65)/tumour necrosis factor-α signalling transduction pathway.

Keywords: Atrogenes; Autophagy; Corticosterone; IGF‐I; Muscle wasting; NF‐kB; γMSH

References

  1. Nat Genet. 2000 Sep;26(1):97-102 - PubMed
  2. Biomed Res Int. 2014;2014:267350 - PubMed
  3. J Neurosci. 1994 Apr;14(4):2377-82 - PubMed
  4. Brain Behav Immun. 2008 Jul;22(5):639-46 - PubMed
  5. Arthritis Rheum. 2002 Oct;46(10):2765-75 - PubMed
  6. J Cachexia Sarcopenia Muscle. 2016 Mar;7(1):79-89 - PubMed
  7. Regul Pept. 2004 Nov 15;122(3):185-90 - PubMed
  8. Peptides. 2010 Dec;31(12):2314-7 - PubMed
  9. Endocr Rev. 2008 Aug;29(5):581-602 - PubMed
  10. Mol Cell Endocrinol. 2009 Oct 15;309(1-2):8-16 - PubMed
  11. J Immunol. 2003 Mar 15;170(6):3323-30 - PubMed
  12. Clin Exp Immunol. 2014 Aug;177(2):381-90 - PubMed
  13. J Mol Endocrinol. 1991 Dec;7(3):197-204 - PubMed
  14. J Immunol. 1998 Sep 15;161(6):2873-80 - PubMed
  15. J Endocrinol. 2008 Apr;197(1):111-9 - PubMed
  16. FASEB J. 2010 Dec;24(12):4835-43 - PubMed
  17. Cell. 2004 Oct 15;119(2):285-98 - PubMed
  18. Eur J Cancer. 2010 Jan;46(1):191-7 - PubMed
  19. Mediators Inflamm. 2014;2014:179368 - PubMed
  20. Peptides. 2006 Feb;27(2):259-64 - PubMed
  21. Am J Physiol Regul Integr Comp Physiol. 2013 May 15;304(10):R877-86 - PubMed
  22. J Endocrinol. 2011 Sep;210(3):361-8 - PubMed
  23. Trends Endocrinol Metab. 2009 Sep;20(7):349-56 - PubMed
  24. Int J Biochem Cell Biol. 2013 Oct;45(10):2163-72 - PubMed
  25. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):E1489-98 - PubMed
  26. Neuroimmunomodulation. 1994 Jan;1(1):28-32 - PubMed
  27. Muscle Nerve. 2005 Mar;31(3):339-48 - PubMed
  28. Dis Model Mech. 2013 Jan;6(1):25-39 - PubMed
  29. FASEB J. 2004 Jan;18(1):39-51 - PubMed
  30. J Inflamm Res. 2011;4:61-6 - PubMed
  31. Biochem Mol Biol Int. 1996 Feb;38(1):73-80 - PubMed
  32. Clin Sci (Lond). 2012 Feb;122(3):133-42 - PubMed
  33. Am J Physiol Endocrinol Metab. 2005 Dec;289(6):E1007-14 - PubMed
  34. J Cachexia Sarcopenia Muscle. 2013 Sep;4(3):231-8 - PubMed
  35. Endocrinology. 2003 Apr;144(4):1513-23 - PubMed
  36. Cell Metab. 2007 Dec;6(6):472-83 - PubMed
  37. Exp Biol Med (Maywood). 2013 Dec;238(12):1421-30 - PubMed
  38. Trends Endocrinol Metab. 2013 Dec;24(12):635-43 - PubMed
  39. Am J Physiol Endocrinol Metab. 2002 Mar;282(3):E650-6 - PubMed
  40. Am J Physiol Endocrinol Metab. 2011 May;300(5):E790-9 - PubMed
  41. Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1656-65 - PubMed
  42. Am J Physiol Regul Integr Comp Physiol. 2010 Aug;299(2):R541-51 - PubMed
  43. Am J Physiol Endocrinol Metab. 2013 May 1;304(9):E922-33 - PubMed
  44. Br J Pharmacol. 2011 Feb;162(4):917-28 - PubMed
  45. Am J Pathol. 2014 Aug;184(8):2333-41 - PubMed

Publication Types