Display options
Share it on

IMA J Appl Math. 2014 Oct;79(5):978-1010. doi: 10.1093/imamat/hxu029. Epub 2014 Jul 01.

Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method.

IMA journal of applied mathematics

Hao Gao, David Carrick, Colin Berry, Boyce E Griffith, Xiaoyu Luo

Affiliations

  1. School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
  2. Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK.
  3. Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA and Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.

PMID: 27041786 PMCID: PMC4816497 DOI: 10.1093/imamat/hxu029

Abstract

Detailed models of the biomechanics of the heart are important both for developing improved interventions for patients with heart disease and also for patient risk stratification and treatment planning. For instance, stress distributions in the heart affect cardiac remodelling, but such distributions are not presently accessible in patients. Biomechanical models of the heart offer detailed three-dimensional deformation, stress and strain fields that can supplement conventional clinical data. In this work, we introduce dynamic computational models of the human left ventricle (LV) that are derived from clinical imaging data obtained from a healthy subject and from a patient with a myocardial infarction (MI). Both models incorporate a detailed invariant-based orthotropic description of the passive elasticity of the ventricular myocardium along with a detailed biophysical model of active tension generation in the ventricular muscle. These constitutive models are employed within a dynamic simulation framework that accounts for the inertia of the ventricular muscle and the blood that is based on an immersed boundary (IB) method with a finite element description of the structural mechanics. The geometry of the models is based on data obtained non-invasively by cardiac magnetic resonance (CMR). CMR imaging data are also used to estimate the parameters of the passive and active constitutive models, which are determined so that the simulated end-diastolic and end-systolic volumes agree with the corresponding volumes determined from the CMR imaging studies. Using these models, we simulate LV dynamics from enddiastole to end-systole. The results of our simulations are shown to be in good agreement with subject-specific CMR-derived strain measurements and also with earlier clinical studies on human LV strain distributions.

Keywords: excitation–contraction coupling; finite element method; hyperelasticity; immersed boundary method; invariant-based constitutive model; left ventricle; magnetic resonance imaging; myocardial infarction

References

  1. J Comput Phys. 2013 Jul 1;244:4-21 - PubMed
  2. Biophys J. 2004 Sep;87(3):2074-85 - PubMed
  3. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:2650-3 - PubMed
  4. IEEE Trans Biomed Eng. 2006 Dec;53(12 Pt 1):2425-35 - PubMed
  5. J Mech Behav Biomed Mater. 2011 Oct;4(7):1090-102 - PubMed
  6. Med Image Comput Comput Assist Interv. 2010;13(Pt 1):418-25 - PubMed
  7. Am J Med. 1980 Oct;69(4):576-84 - PubMed
  8. Int J Numer Method Biomed Eng. 2014 Nov;30(11):1199-222 - PubMed
  9. J Biomech. 1992 Oct;25(10):1129-40 - PubMed
  10. Congest Heart Fail. 2007 Jul-Aug;13(4):209-14 - PubMed
  11. Med Image Anal. 2009 Oct;13(5):773-84 - PubMed
  12. Med Image Anal. 2009 Apr;13(2):362-9 - PubMed
  13. Ann Thorac Surg. 2012 Apr;93(4):1188-93 - PubMed
  14. Ann Biomed Eng. 2007 Jan;35(1):1-18 - PubMed
  15. Biophys J. 2006 Mar 1;90(5):1697-722 - PubMed
  16. Ann Biomed Eng. 1999 May-Jun;27(3):289-97 - PubMed
  17. Biomech Model Mechanobiol. 2014 Jan;13(1):99-113 - PubMed
  18. Radiology. 2000 Feb;214(2):453-66 - PubMed
  19. Ann Thorac Surg. 2001 Feb;71(2):654-62 - PubMed
  20. Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H853-8 - PubMed
  21. Int J Numer Method Biomed Eng. 2012 Mar;28(3):317-45 - PubMed
  22. Am J Physiol. 1999 Feb;276(2 Pt 2):H595-607 - PubMed
  23. Ann Thorac Surg. 2011 Sep;92 (3):935-41 - PubMed
  24. Am J Physiol Heart Circ Physiol. 2002 Dec;283(6):H2650-9 - PubMed
  25. Am J Physiol. 1992 Apr;262(4 Pt 2):H1256-67 - PubMed
  26. J Am Coll Cardiol. 1999 Oct;34(4):989-97 - PubMed
  27. Prog Biophys Mol Biol. 2011 Oct;107(1):147-55 - PubMed
  28. Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H403-12 - PubMed
  29. Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H692-700 - PubMed
  30. J Biomech. 1995 Oct;28(10):1167-77 - PubMed
  31. Cardiovasc Res. 2011 Feb 1;89(2):336-43 - PubMed
  32. Biomech Model Mechanobiol. 2012 Jul;11(6):815-27 - PubMed
  33. Eur Heart J. 2010 Aug;31(16):2006-13 - PubMed
  34. Pacing Clin Electrophysiol. 2012 Feb;35(2):204-14 - PubMed
  35. J Biomech Eng. 2011 Apr;133(4):044501 - PubMed
  36. Front Physiol. 2012 Apr 09;3:86 - PubMed
  37. Radiology. 2000 Jul;216(1):128-39 - PubMed
  38. Int J Numer Method Biomed Eng. 2013 Jan;29(1):83-103 - PubMed
  39. J Cardiovasc Electrophysiol. 2007 Aug;18(8):862-8 - PubMed
  40. J Cardiovasc Transl Res. 2012 Apr;5(2):159-69 - PubMed
  41. Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H1058-68 - PubMed
  42. Prog Biophys Mol Biol. 1998;69(2-3):289-331 - PubMed
  43. J Biomech Eng. 1991 Feb;113(1):42-55 - PubMed
  44. Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3445-75 - PubMed
  45. Phys Med Biol. 2014 Jul 7;59(13):3637-56 - PubMed
  46. Circulation. 1990 Apr;81(4):1161-72 - PubMed
  47. J Magn Reson Imaging. 2003 Jan;17(1):31-42 - PubMed
  48. J Biomech Eng. 2009 Nov;131(11):111001 - PubMed
  49. Comput Methods Appl Mech Eng. 2006 Feb 15;195(13-16):1722-1749 - PubMed
  50. Eur J Heart Fail. 2004 Oct;6(6):715-22 - PubMed

Publication Types

Grant support