Display options
Share it on

Sci Rep. 2016 Mar 17;6:22736. doi: 10.1038/srep22736.

Multi-Shell Hollow Nanogels with Responsive Shell Permeability.

Scientific reports

Andreas J Schmid, Janine Dubbert, Andrey A Rudov, Jan Skov Pedersen, Peter Lindner, Matthias Karg, Igor I Potemkin, Walter Richtering

Affiliations

  1. Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
  2. Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
  3. DWI-Leibnitz Institute for Interactive Materials e.V., 52056 Aachen, Germany.
  4. Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark.
  5. Institut Laue Langevin (ILL), 71 avenue des Martyrs, 38000 Grenoble, France.
  6. Physical Chemistry I, University of Bayreuth, 85440 Bayreuth, Germany.

PMID: 26984478 PMCID: PMC4794761 DOI: 10.1038/srep22736

Abstract

We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.

References

  1. Biomacromolecules. 2014 Apr 14;15(4):1526-33 - PubMed
  2. Langmuir. 2009 Apr 21;25(8):4659-67 - PubMed
  3. J Chem Phys. 2015 May 7;142(17):171105 - PubMed
  4. Biomaterials. 2012 Dec;33(35):9157-64 - PubMed
  5. ACS Appl Mater Interfaces. 2015 Jun 10;7(22):11930-8 - PubMed
  6. Biomaterials. 2009 Apr;30(11):2112-21 - PubMed
  7. Colloid Polym Sci. 2010 Dec 4;289(3):333-339 - PubMed
  8. Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12499-503 - PubMed
  9. Nature. 2014 Jan 16;505(7483):382-5 - PubMed
  10. Macromol Rapid Commun. 2015 Jan;36(2):159-64 - PubMed
  11. J Control Release. 2008 Jan 4;125(1):25-32 - PubMed
  12. ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17399-407 - PubMed
  13. Angew Chem Int Ed Engl. 2013 Oct 25;52(44):11462-8 - PubMed
  14. Int J Nanomedicine. 2012;7:1651-7 - PubMed
  15. Bioconjug Chem. 2009 May 20;20(5):960-8 - PubMed
  16. ACS Nano. 2012 Jan 24;6(1):212-9 - PubMed
  17. Nat Mater. 2013 Nov;12(11):991-1003 - PubMed
  18. Biomacromolecules. 2012 Jul 9;13(7):2163-73 - PubMed
  19. ACS Nano. 2012 Mar 27;6(3):2198-214 - PubMed
  20. Nat Rev Drug Discov. 2005 Feb;4(2):145-60 - PubMed
  21. J Am Chem Soc. 2005 Jul 6;127(26):9372-3 - PubMed
  22. Nat Mater. 2010 Feb;9(2):101-13 - PubMed
  23. Biomacromolecules. 2013 Dec 9;14(12):4398-406 - PubMed
  24. Phys Chem Chem Phys. 2008 Nov 28;10(44):6708-16 - PubMed
  25. Adv Mater. 2013 Sep 25;25(36):5029-43 - PubMed
  26. Adv Drug Deliv Rev. 1998 Mar 2;30(1-3):49-60 - PubMed
  27. Acc Chem Res. 2012 Jul 17;45(7):985-93 - PubMed
  28. J Am Chem Soc. 2013 May 29;135(21):7933-7 - PubMed
  29. Curr Pharm Des. 2006;12(36):4703-12 - PubMed
  30. Angew Chem Int Ed Engl. 2008;47(2):338-41 - PubMed
  31. J Chem Phys. 2004 Apr 1;120(13):6197-206 - PubMed
  32. J Chem Phys. 2011 Feb 28;134(8):081102 - PubMed
  33. Biomacromolecules. 2011 Jan 10;12(1):116-22 - PubMed
  34. Langmuir. 2015 Dec 8;31(48):13145-54 - PubMed
  35. Angew Chem Int Ed Engl. 2006 Mar 3;45(11):1737-41 - PubMed

Publication Types