Display options
Share it on

Science. 2016 Mar 25;351(6280):aad3000. doi: 10.1126/science.aad3000.

Reproducibility in density functional theory calculations of solids.

Science (New York, N.Y.)

Kurt Lejaeghere, Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan Blügel, Volker Blum, Damien Caliste, Ivano E Castelli, Stewart J Clark, Andrea Dal Corso, Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst, Igor Di Marco, Claudia Draxl, Marcin Dułak, Olle Eriksson, José A Flores-Livas, Kevin F Garrity, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Grånäs, E K U Gross, Andris Gulans, François Gygi, D R Hamann, Phil J Hasnip, N A W Holzwarth, Diana Iuşan, Dominik B Jochym, François Jollet, Daniel Jones, Georg Kresse, Klaus Koepernik, Emine Küçükbenli, Yaroslav O Kvashnin, Inka L M Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche, Lars Nordström, Taisuke Ozaki, Lorenzo Paulatto, Chris J Pickard, Ward Poelmans, Matt I J Probert, Keith Refson, Manuel Richter, Gian-Marco Rignanese, Santanu Saha, Matthias Scheffler, Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma, Francesca Tavazza, Patrik Thunström, Alexandre Tkatchenko, Marc Torrent, David Vanderbilt, Michiel J van Setten, Veronique Van Speybroeck, John M Wills, Jonathan R Yates, Guo-Xu Zhang, Stefaan Cottenier

Affiliations

  1. Center for Molecular Modeling, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium.
  2. Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA (Jülich Aachen Research Alliance), D-52425 Jülich, Germany.
  3. Department of Physics, Åbo Akademi, FI-20500 Turku, Finland. Centre of Excellence in Computational Nanoscience (COMP) and Department of Applied Physics, Aalto University School of Science, Post Office Box 11100, FI-00076 Aalto, Finland.
  4. Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria.
  5. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
  6. Université Grenoble Alpes, Institut Nanosciences et Cryogénie-Modeling and Material Exploration Department (INAC-MEM), Laboratoire de Simulation Atomistique (L_Sim), F-38042 Grenoble, France. Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), INAC-MEM, L_Sim, F-38054 Grenoble, France.
  7. Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  8. Department of Physics, University of Durham, Durham DH1 3LE, UK.
  9. International School for Advanced Studies (SISSA) and DEMOCRITOS, Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), Via Bonomea 265, I-34136 Trieste, Italy.
  10. Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany.
  11. Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Post Office Box 516, SE-75120 Uppsala, Sweden.
  12. Institut für Physik and Integrative Research Institute for the Sciences (IRIS)-Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
  13. Center for Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
  14. Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8553, Gaithersburg, MD 20899, USA.
  15. Department of Mathematics, Computer Science, and Physics, University of Udine, Via delle Scienze 206, I-33100 Udine, Italy.
  16. Institute of Condensed Matter and Nanosciences-Nanoscopic Physics (NAPS), Université Catholique de Louvain, Chemin des Étoiles 8, BE-1348 Louvain-la-Neuve, Belgium.
  17. Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
  18. Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Post Office Box 516, SE-75120 Uppsala, Sweden. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  19. Department of Computer Science, University of California-Davis, Davis, CA 95616, USA.
  20. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019, USA. Mat-Sim Research, Post Office Box 742, Murray Hill, NJ 07974, USA.
  21. Department of Physics, University of York, Heslington, York YO10 5DD, UK.
  22. Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.
  23. Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
  24. CEA, DAM, DIF, F-91297 Arpajon, France.
  25. Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, UK.
  26. Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria.
  27. Leibniz?Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, Post Office Box 270 116, D-01171 Dresden, Germany. Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, D-01069 Dresden, Germany.
  28. Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. International School for Advanced Studies (SISSA) and DEMOCRITOS, Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), Via Bonomea 265, I-34136 Trieste, Italy.
  29. Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Post Office Box 516, SE-75120 Uppsala, Sweden. Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
  30. Institut für Physik and Integrative Research Institute for the Sciences (IRIS)-Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany.
  31. Leibniz?Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, Post Office Box 270 116, D-01171 Dresden, Germany.
  32. Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan.
  33. Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités-Pierre and Marie Curie University Paris 06, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7590, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement (IRD) Unité de Recherche 206, 4 Place Jussieu, F-75005 Paris, France.
  34. Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
  35. Center for Molecular Modeling, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium. High Performance Computing Unit, Ghent University, Krijgslaan 281 S9, BE-9000 Ghent, Belgium.
  36. Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, UK. ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
  37. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany. Department of Chemistry and Biochemistry and Materials Department, University of California-Santa Barbara, Santa Barbara, CA 93106-5050, USA.
  38. Institute for Solid State Physics, Vienna University of Technology, A-1040 Vienna, Austria.
  39. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany. Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg.
  40. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019, USA.
  41. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
  42. Institute of Theoretical and Simulational Chemistry, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
  43. Center for Molecular Modeling, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium. Department of Materials Science and Engineering, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium.

PMID: 27013736 DOI: 10.1126/science.aad3000

Abstract

The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

Copyright © 2016, American Association for the Advancement of Science.

Publication Types