Display options
Share it on

Front Behav Neurosci. 2016 Mar 09;10:38. doi: 10.3389/fnbeh.2016.00038. eCollection 2016.

Contextual Modulation of Vocal Behavior in Mouse: Newly Identified 12 kHz "Mid-Frequency" Vocalization Emitted during Restraint.

Frontiers in behavioral neuroscience

Jasmine M S Grimsley, Saloni Sheth, Neil Vallabh, Calum A Grimsley, Jyoti Bhattal, Maeson Latsko, Aaron Jasnow, Jeffrey J Wenstrup

Affiliations

  1. Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA.
  2. Department of Psychological Sciences, Kent State University Kent, OH, USA.

PMID: 27014000 PMCID: PMC4783392 DOI: 10.3389/fnbeh.2016.00038

Abstract

While several studies have investigated mouse ultrasonic vocalizations (USVs) emitted by isolated pups or by males in mating contexts, studies of behavioral contexts other than mating and vocalization categories other than USVs have been limited. By improving our understanding of the vocalizations emitted by mice across behavioral contexts, we will better understand the natural vocal behavior of mice and better interpret vocalizations from mouse models of disease. Hypothesizing that mouse vocal behavior would differ depending on behavioral context, we recorded vocalizations from male CBA/CaJ mice across three behavioral contexts including mating, isolation, and restraint. We found that brief restraint elevated blood corticosterone levels of mice, indicating increased stress relative to isolation. Further, after 3 days of brief restraint, mice displayed behavioral changes indicative of stress. These persisted for at least 2 days after restraint. Contextual differences in mouse vocal behavior were striking and robust across animals. Thus, while USVs were the most common vocalization type across contexts, the spectrotemporal features of USVs were context-dependent. Compared to the mating context, vocalizations during isolation and restraint displayed a broader frequency range, with a greater emphasis on frequencies below 50 kHz. These contexts also included more non-USV vocal categories and different vocal patterns. We identified a new Mid-Frequency Vocalization, a tonal vocalization with fundamental frequencies below 18 kHz, which was almost exclusively emitted by mice undergoing restraint stress. These differences combine to form vocal behavior that is grossly different among behavioral contexts and may reflect the level of anxiety in these contexts.

Keywords: context; isolation; mouse; restraint; stress; vocalization

References

  1. Brain Struct Funct. 2015 Nov;220(6):3385-98 - PubMed
  2. J Vis Exp. 2012 Jun 26;(64):null - PubMed
  3. Neurosci Biobehav Rev. 2009 Apr;33(4):508-15 - PubMed
  4. Sci Rep. 2015 Mar 06;5:8808 - PubMed
  5. J Neurophysiol. 2010 Dec;104(6):3588-99 - PubMed
  6. Front Behav Neurosci. 2015 Apr 01;9:76 - PubMed
  7. Genes Brain Behav. 2011 Feb;10 (1):35-43 - PubMed
  8. PLoS One. 2007 Apr 04;2(4):e351 - PubMed
  9. Science. 2002 Feb 22;295(5559):1493-500 - PubMed
  10. Hear Res. 1999 Apr;130(1-2):94-107 - PubMed
  11. Anim Behav. 1972 Feb;20(1):88-100 - PubMed
  12. Behav Brain Res. 2007 Sep 4;182(2):223-30 - PubMed
  13. Naturwissenschaften. 2004 Aug;91(8):381-5 - PubMed
  14. Genes Brain Behav. 2011 Feb;10(1):44-56 - PubMed
  15. PLoS One. 2009;4(2):e4387 - PubMed
  16. Cell. 2009 May 29;137(5):961-71 - PubMed
  17. Dev Psychobiol. 1997 Mar;30(2):141-50 - PubMed
  18. Physiol Behav. 1995 Jun;57(6):1039-44 - PubMed
  19. J Vis Exp. 2013 Dec 24;(82):50978 - PubMed
  20. PLoS One. 2015 Feb 20;10(2):e0117503 - PubMed
  21. Eur J Neurosci. 2006 Dec;24(11):3245-54 - PubMed
  22. PLoS One. 2012;7(1):e29401 - PubMed
  23. Autism Res. 2011 Oct;4(5):317-35 - PubMed
  24. Front Behav Neurosci. 2015 Dec 10;9:316 - PubMed
  25. Genes Brain Behav. 2016 Feb;15(2):243-59 - PubMed
  26. Neuroscience. 2009 Aug 18;162(2):486-500 - PubMed
  27. Lab Anim. 1994 Oct;28(4):293-306 - PubMed
  28. Psychoneuroendocrinology. 1986;11(2):177-84 - PubMed
  29. J Neurosci. 2013 Oct 30;33(44):17538-48 - PubMed
  30. Neurosci Biobehav Rev. 1986 Fall;10(3):339-70 - PubMed
  31. PLoS One. 2015 Mar 25;10(3):e0121802 - PubMed
  32. Arch Otorhinolaryngol. 1980;228(4):295-8 - PubMed
  33. Behav Brain Res. 2012 Jan 1;226(1):77-86 - PubMed
  34. PLoS One. 2011 Mar 09;6(3):e17460 - PubMed
  35. Neurosci Biobehav Rev. 2003 Aug;27(5):437-46 - PubMed
  36. PLoS One. 2012;7(11):e49233 - PubMed
  37. Pharmacol Biochem Behav. 1980 Aug;13(2):167-70 - PubMed
  38. Neuroscience. 2015 Apr 2;290:608-20 - PubMed
  39. Psychopharmacology (Berl). 1995 Sep;121(1):38-56 - PubMed
  40. Hear Res. 2005 Apr;202(1-2):63-73 - PubMed
  41. Dev Psychobiol. 1998 Nov;33(3):249-56 - PubMed
  42. Physiol Behav. 1983 Sep;31(3):269-72 - PubMed
  43. PLoS One. 2008 Aug 27;3(8):e3067 - PubMed
  44. J Neurophysiol. 2012 Feb;107(4):1047-57 - PubMed
  45. J Am Assoc Lab Anim Sci. 2007 Jan;46(1):28-34 - PubMed
  46. PLoS One. 2008 Apr 02;3(4):e1893 - PubMed
  47. Physiol Behav. 1983 Jul;31(1):91-6 - PubMed
  48. Pharmacol Biochem Behav. 1993 Feb;44(2):313-9 - PubMed
  49. Hear Res. 2005 Nov;209(1-2):97-103 - PubMed
  50. J Comp Psychol. 1985 Dec;99(4):420-36 - PubMed
  51. Physiol Behav. 1991 Nov;50(5):967-72 - PubMed
  52. J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3412-22 - PubMed
  53. Neuroscience. 2013 Aug 29;246:94-107 - PubMed
  54. J Hered. 1969 Nov-Dec;60(6):337-40 - PubMed
  55. Genes Brain Behav. 2011 Feb;10(1):4-16 - PubMed
  56. J Comp Psychol. 1998 Mar;112(1):65-73 - PubMed
  57. Behav Brain Res. 2015 Jan 1;276:67-75 - PubMed

Publication Types

Grant support