Display options
Share it on

Front Immunol. 2016 Mar 14;7:92. doi: 10.3389/fimmu.2016.00092. eCollection 2016.

Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE.

Frontiers in immunology

Helena Radbruch, Daniel Bremer, Robert Guenther, Zoltan Cseresnyes, Randall Lindquist, Anja E Hauser, Raluca Niesner

Affiliations

  1. Department of Neuropathology, Charité - Universitätsmedizin Berlin , Berlin , Germany.
  2. German Rheumatism Research Center (DRFZ) a Leibniz Institute , Berlin , Germany.
  3. German Rheumatism Research Center (DRFZ) a Leibniz Institute, Berlin, Germany; Immundynamics, Charité - Universiätsmedizin Berlin, Berlin, Germany.

PMID: 27014271 PMCID: PMC4789534 DOI: 10.3389/fimmu.2016.00092

Abstract

Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1-4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET-FLIM, providing a possible mechanism of disease progression in MS.

Keywords: EAE/MS; FLIM–FRET; NOX; calcium; intravital imaging

References

  1. Brain. 2009 May;132(Pt 5):1175-89 - PubMed
  2. PLoS One. 2013 Apr 16;8(4):e60100 - PubMed
  3. N Engl J Med. 2006 Mar 2;354(9):942-55 - PubMed
  4. Nat Methods. 2007 Feb;4(2):127-9 - PubMed
  5. Ann Rheum Dis. 2008 Dec;67 Suppl 3:iii56-60 - PubMed
  6. Ann Neurol. 2011 Dec;70(6):932-42 - PubMed
  7. Biochim Biophys Acta. 2011 Feb;1812(2):275-82 - PubMed
  8. Brain. 2009 May;132(Pt 5):1247-58 - PubMed
  9. Nat Med. 2011 Apr;17(4):495-9 - PubMed
  10. Int J Mol Sci. 2015 May 21;16(5):11713-27 - PubMed
  11. Acta Neuropathol. 2014 Aug;128(2):247-66 - PubMed
  12. Nat Neurosci. 2011 Jul 31;14(9):1142-9 - PubMed
  13. Immunity. 2010 Sep 24;33(3):424-36 - PubMed
  14. J Biophys. 2008;2008:602639 - PubMed
  15. Brain. 2006 Aug;129(Pt 8):1972-83 - PubMed
  16. Acta Neuropathol. 2015 Dec;130(6):799-814 - PubMed
  17. J Exp Med. 2014 Jul 28;211(8):1533-49 - PubMed
  18. Front Immunol. 2015 May 26;6:249 - PubMed
  19. Immunity. 2015 Sep 15;43(3):502-14 - PubMed
  20. Brain. 2012 Mar;135(Pt 3):886-99 - PubMed
  21. Semin Immunopathol. 2009 Nov;31(4):455-65 - PubMed

Publication Types