Display options
Share it on

Ecol Evol. 2016 Mar 22;6(9):2854-64. doi: 10.1002/ece3.1810. eCollection 2016 May.

Evolutionary patterns of volatile terpene emissions across 202 tropical tree species.

Ecology and evolution

Elodie A Courtois, Kyle G Dexter, Charles Eliot Timothy Paine, Didier Stien, Julien Engel, Christopher Baraloto, Jérôme Chave

Affiliations

  1. CNRS Guyane USR 34562, Avenue Gustave Charlery 97300 Cayenne France; Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS/Université Paul Sabatier 118, route de Narbonne 31062 Toulouse France; CNRS, UMR Ecofog Université Antilles Guyane BP 70997387 Kourou Cedex France.
  2. Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS/Université Paul Sabatier 118, route de Narbonne 31062 Toulouse France; School of GeoSciences University of Edinburgh Edinburgh EH9 3FFUK; Royal Botanic Garden Edinburgh 20a Inverleith Row Edinburgh EH3 5LR UK.
  3. Biological and Environmental Sciences University of Stirling Stirling FK9 4LA UK.
  4. CNRS, UMR Ecofog Université Antilles Guyane BP 70997387 Kourou Cedex France; Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) Observatoire Océanologique Sorbonne Universités, UPMC Univ Paris 06, CNRS 66650 Banyuls-sur-mer France.
  5. INRA UMR Ecofog BP 701 97387 Kourou Cedex France.
  6. INRAUMR Ecofog BP 70197387 Kourou Cedex France; International Center for Tropical Botany Department of Biological Sciences Florida International University Miami Florida 33199.
  7. Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS/Université Paul Sabatier 118, route de Narbonne 31062 Toulouse France.

PMID: 27069586 PMCID: PMC4803801 DOI: 10.1002/ece3.1810

Abstract

Plant responses to natural enemies include formation of secondary metabolites acting as direct or indirect defenses. Volatile terpenes represent one of the most diverse groups of secondary metabolites. We aimed to explore evolutionary patterns of volatile terpene emission. We measured the composition of damage-induced volatile terpenes from 202 Amazonian tree species, spanning the angiosperm phylogeny. Volatile terpenes were extracted with solid-phase micro extraction and desorbed in a gas chromatography-mass spectrometry for compound identification. The chemical diversity of the terpene blend showed a strong phylogenetic signal as closely related species emitted a similar number of compounds. Closely related species also tended to have compositionally similar blends, although this relationship was weak. Meanwhile, the ability to emit a given compound showed no significant phylogenetic signal for 200 of 286 compounds, indicating a high rate of diversification in terpene synthesis and/or great variability in their expression. Three lineages (Magnoliales, Laurales, and Sapindales) showed exceptionally high rates of terpene diversification. Of the 70 compounds found in >10% of their species, 69 displayed significant correlated evolution with at least one other compound. These results provide insights into the complex evolutionary history of volatile terpenes in angiosperms, while highlighting the need for further research into this important class of compounds.

Keywords: Chemical defense; French Guiana; herbivory; secondary metabolites; tropical forest

References

  1. Am J Bot. 1999 May;86(5):634-9 - PubMed
  2. Nature. 1999 Oct 28;401(6756):877-84 - PubMed
  3. Nature. 2000 Mar 30;404(6777):493-5 - PubMed
  4. Syst Biol. 2002 Oct;51(5):729-39 - PubMed
  5. Syst Biol. 2003 Apr;52(2):131-58 - PubMed
  6. Phytochemistry. 2003 Sep;64(1):3-19 - PubMed
  7. Science. 1959 May 29;129(3361):1466-70 - PubMed
  8. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  9. Plant Physiol. 2004 Aug;135(4):1893-902 - PubMed
  10. Trends Plant Sci. 2006 Mar;11(3):112-3; author reply 113-4 - PubMed
  11. BMC Bioinformatics. 2006 Feb 23;7:88 - PubMed
  12. Am Nat. 2006 Jun;167(6):808-25 - PubMed
  13. Nat Chem Biol. 2007 Jul;3(7):408-14 - PubMed
  14. Phytochemistry. 2007 Nov-Dec;68(22-24):2831-46 - PubMed
  15. BMC Evol Biol. 2007 Nov 08;7:214 - PubMed
  16. New Phytol. 2008;178(1):41-61 - PubMed
  17. Ecol Lett. 2008 Oct;11(10):995-1003 - PubMed
  18. Syst Biol. 2008 Oct;57(5):758-71 - PubMed
  19. Curr Opin Plant Biol. 2009 Aug;12(4):479-85 - PubMed
  20. Ecol Lett. 2009 Jul;12(7):693-715 - PubMed
  21. Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18062-6 - PubMed
  22. Bioresour Technol. 2010 Jan;101(1):372-8 - PubMed
  23. Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18073-8 - PubMed
  24. Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18097-102 - PubMed
  25. J Chem Ecol. 2009 Nov;35(11):1349-62 - PubMed
  26. Conserv Biol. 2010 Aug;24(4):1042-51 - PubMed
  27. Plant Physiol. 2010 Jul;153(3):1293-310 - PubMed
  28. J Anim Ecol. 2010 Nov;79(6):1193-203 - PubMed
  29. Bioinformatics. 2011 Feb 15;27(4):592-3 - PubMed
  30. Plant J. 2011 Apr;66(1):212-29 - PubMed
  31. Am J Bot. 2010 Aug;97(8):1296-303 - PubMed
  32. Am J Bot. 2009 Jan;96(1):349-65 - PubMed
  33. Bioinformatics. 2012 Sep 1;28(17):2278-80 - PubMed
  34. J Chem Ecol. 2013 Jan;39(1):90-100 - PubMed
  35. Ecol Lett. 2013 Aug;16(8):951-63 - PubMed
  36. J Chem Ecol. 1994 Sep;20(9):2229-47 - PubMed
  37. J Chem Ecol. 1987 Apr;13(4):837-50 - PubMed
  38. Annu Rev Plant Biol. 2015;66:139-59 - PubMed
  39. Oecologia. 1999 Feb;118(2):109-123 - PubMed
  40. Oecologia. 2002 Jan;130(1):1-14 - PubMed
  41. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4126-33 - PubMed

Publication Types