Display options
Share it on

Am J Nucl Med Mol Imaging. 2016 Jan 28;6(1):1-17. eCollection 2016.

Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology.

American journal of nuclear medicine and molecular imaging

Matthias N van Oosterom, Hervé Simon, Laurent Mengus, Mick M Welling, Henk G van der Poel, Nynke S van den Berg, Fijs Wb van Leeuwen

Affiliations

  1. Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center (LUMC) Leiden, The Netherlands.
  2. Eurorad S.A. Eckbolsheim, France.
  3. Department of Urology, Antoni van Leeuwenhoek Hospital-Netherlands Cancer Institute (AVL-NKI) Amsterdam, The Netherlands.
  4. Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center (LUMC)Leiden, The Netherlands; Department of Urology, Antoni van Leeuwenhoek Hospital-Netherlands Cancer Institute (AVL-NKI)Amsterdam, The Netherlands.

PMID: 27069762 PMCID: PMC4749501

Abstract

In complex (robot-assisted) laparoscopic radioguided surgery procedures, or when low activity lesions are located nearby a high activity background, the limited maneuverability of a laparoscopic gamma probe (LGP; 4 degrees of freedom (DOF)) may hinder lesion identification. We investigated a drop-in gamma probe (DIGP) technology to be inserted via a trocar, after which the laparoscopic surgical tool at hand can pick it up and maneuver it. Phantom experiments showed that distinguishing a low objective from a high background source (1:100 ratio) was only possible with the detector faced >90° from the high background source. Signal-low-objective-to-background ratios of 3.77, 2.01 and 1.84 were found for detector angles of 90°, 135° and 180°, respectively, whereas detector angles of 0° and 45° were unable to distinguish the sources. This underlines the critical role probe positioning plays. We then focused on engineering of the gripping part for optimal DIGP pick-up with a conventional laparoscopic forceps (4 DOF) or a robotic forceps (6 DOF). DIGPs with 0°, 45°, 90°, and 135° -grip orientations were designed, and their maneuverability- and scanning direction were evaluated and compared to a conventional LGP. The maneuverability- and scanning direction of the DIGP was found highest when using the robotic forceps, with the largest effective scanning direction range obtained with the 90° -grip design (0-180° versus 0-111°, 0-140°, and 37-180° for 0°, 45° and 135° -grip designs, respectively). For the laparoscopic forceps, the scan direction directly translated from the angle of the grip design with the advantage that the 135° -gripped DIGP could be faced backwards (not possible with the conventional LGP). In the ex vivo clinical setup, the surgeon rated DIGP pick-up most convenient for the 45°-grip design. Concluding, the DIGP technology was successfully introduced. Optimization of the grip design and grasping angle of the DIGP increased its utility for (robot-assisted) laparoscopic gamma tracing.

Keywords: Radioguided surgery; gamma probe; interventional molecular imaging; laparoscopic surgery; robot-assisted surgery; sentinel lymph node biopsy; urology

References

  1. J Nucl Med. 2010 Mar;51(3):376-82 - PubMed
  2. Eur J Nucl Med Mol Imaging. 2004 Nov;31(11):1479-86 - PubMed
  3. World J Surg Oncol. 2009 Jan 27;7:11 - PubMed
  4. Am J Nucl Med Mol Imaging. 2015 Feb 15;5(3):233-45 - PubMed
  5. Gastric Cancer. 2005;8(2):103-10 - PubMed
  6. Eur Urol. 2015 Sep;68(3):530-4 - PubMed
  7. Eur Urol. 2008 Jan;53(1):126-32 - PubMed
  8. IEEE Trans Med Imaging. 2016 Mar;35(3):830-8 - PubMed
  9. Oral Oncol. 2015 Mar;51(3):287-90 - PubMed
  10. Eur J Nucl Med Mol Imaging. 2009 Jan;36(1):1-5 - PubMed
  11. Eur Urol. 2011 Oct;60(4):826-33 - PubMed
  12. Surg Oncol. 1993 Oct;2(5):303-8 - PubMed
  13. EJNMMI Res. 2012 Sep 27;2(1):51 - PubMed
  14. Semin Nucl Med. 2011 May;41(3):166-81 - PubMed
  15. J Surg Oncol. 2002 Mar;79(3):188-93 - PubMed
  16. Eur J Nucl Med Mol Imaging. 2010 Aug;37(8):1452-61 - PubMed
  17. Eur Urol. 2014 Dec;66(6):991-8 - PubMed
  18. Eur J Nucl Med Mol Imaging. 2013 Oct;40(11):1656-61 - PubMed
  19. J Nucl Med. 2013 Apr;54(4):493-6 - PubMed
  20. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):561-9 - PubMed
  21. Eur Urol. 2007 Jul;52(1):126-32 - PubMed
  22. Eur J Nucl Med Mol Imaging. 2013 Aug;40(8):1283-91 - PubMed
  23. J Nucl Med. 2013 May;54(5):664-7 - PubMed
  24. BJU Int. 2008 Sep;102(6):714-7 - PubMed
  25. Nat Clin Pract Urol. 2006 Nov;3(11):602-10 - PubMed
  26. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):909-17 - PubMed
  27. Radiology. 2015 Jul;276(1):12-29 - PubMed
  28. Front Radiat Ther Oncol. 2008;41:58-67 - PubMed
  29. Prostate Cancer. 2012;2012:751753 - PubMed

Publication Types