Display options
Share it on

Mol Metab. 2016 Feb 10;5(4):271-282. doi: 10.1016/j.molmet.2016.01.008. eCollection 2016 Apr.

Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance.

Molecular metabolism

Mayte Alvarez-Crespo, Robert I Csikasz, Noelia Martínez-Sánchez, Carlos Diéguez, Barbara Cannon, Jan Nedergaard, Miguel López

Affiliations

  1. Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
  2. The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91, Stockholm, Sweden.
  3. The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91, Stockholm, Sweden. Electronic address: [email protected].
  4. Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain. Electronic address: [email protected].

PMID: 27069867 PMCID: PMC4812006 DOI: 10.1016/j.molmet.2016.01.008

Abstract

OBJECTIVE: Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice.

METHODS: Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry.

RESULTS: We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 °C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging ("browning") of inguinal white adipose tissue (iWAT).

CONCLUSIONS: We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents.

Keywords: AMPK; Brown adipose tissue; Hypothalamus; Thyroid hormones; UCP1

References

  1. Physiol Rev. 2014 Apr;94(2):355-82 - PubMed
  2. Gastroenterology. 2013 Mar;144(3):636-649.e6 - PubMed
  3. Nat Neurosci. 1998 Aug;1(4):271-2 - PubMed
  4. Nat Med. 2010 Sep;16(9):1001-8 - PubMed
  5. Cell Metab. 2014 Jul 1;20(1):41-53 - PubMed
  6. Exp Biol Med (Maywood). 2011 Nov;236(11):1274-81 - PubMed
  7. J Pathol. 2012 Jun;227(2):209-22 - PubMed
  8. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16241-6 - PubMed
  9. Acta Physiol Acad Sci Hung. 1970;37(1):51-5 - PubMed
  10. J Neurosci. 2004 Jun 2;24(22):5091-100 - PubMed
  11. J Biol Chem. 1999 Oct 1;274(40):28150-60 - PubMed
  12. Cell Rep. 2013 Dec 12;5(5):1196-203 - PubMed
  13. FASEB J. 2003 Aug;17(11):1392-400 - PubMed
  14. Cell Metab. 2008 May;7(5):389-99 - PubMed
  15. J Clin Invest. 2013 Jan;123(1):509-16 - PubMed
  16. Physiol Rev. 2004 Jan;84(1):277-359 - PubMed
  17. Ann N Y Acad Sci. 1998 Sep 29;856:171-87 - PubMed
  18. Cell. 2012 May 11;149(4):871-85 - PubMed
  19. Diabetes. 2014 Oct;63(10):3346-58 - PubMed
  20. Nat Med. 2010 Sep;16(9):965-7 - PubMed
  21. Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52 - PubMed
  22. Endocrinology. 2014 May;155(5):1679-89 - PubMed
  23. Trends Endocrinol Metab. 2010 Apr;21(4):230-6 - PubMed
  24. Cell Rep. 2014 Oct 9;9(1):366-77 - PubMed
  25. Brain Res. 2012 Apr 23;1450:40-8 - PubMed
  26. PLoS One. 2013;8(2):e56660 - PubMed
  27. Nature. 1997 May 1;387(6628):90-4 - PubMed
  28. Regul Pept. 1998 Sep 25;75-76:93-100 - PubMed
  29. Front Physiol. 2013 Jun 04;4:128 - PubMed
  30. Cell Metab. 2014 Sep 2;20(3):396-407 - PubMed
  31. Am J Physiol Endocrinol Metab. 2006 Aug;291(2):E350-7 - PubMed
  32. Trends Mol Med. 2013 Jul;19(7):418-27 - PubMed
  33. Diabetes. 2012 Apr;61(4):807-17 - PubMed
  34. Endocrinology. 1998 Apr;139(4):1645-52 - PubMed
  35. Physiol Rev. 2006 Apr;86(2):435-64 - PubMed
  36. Ann N Y Acad Sci. 1997 Mar 15;813:712-7 - PubMed
  37. PLoS One. 2013 Dec 30;8(12 ):e84229 - PubMed

Publication Types

Grant support