Display options
Share it on

Mol Metab. 2016 Jan 25;5(4):296-304. doi: 10.1016/j.molmet.2016.01.006. eCollection 2016 Apr.

Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass.

Molecular metabolism

Pernille Barkholt, Philip J Pedersen, Anders Hay-Schmidt, Jacob Jelsing, Henrik H Hansen, Niels Vrang

Affiliations

  1. Gubra, Agern Alle 1, 2970 Hørsholm, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark. Electronic address: [email protected].
  2. Gubra, Agern Alle 1, 2970 Hørsholm, Denmark.
  3. Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.

PMID: 27069869 PMCID: PMC4811984 DOI: 10.1016/j.molmet.2016.01.006

Abstract

OBJECTIVE: The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance.

METHODS: Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain.

RESULTS: RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption compared with sham operated controls. In the arcuate nucleus, RYGB surgery increased mRNA levels of orexigenic AgRP and NPY, whereas no change was observed in anorexigenic CART and POMC mRNA levels. A similar pattern was seen in food-restricted versus ad libitum fed rats. In contrast to a significant increase of orexigenic MCH mRNA levels in food-restricted animals, RYGB did not change MCH expression in the lateral hypothalamus. In the VTA, RYGB surgery induced a reduction in mRNA levels of TH and DAT, whereas no changes were observed in the substantia nigra relative to sham surgery.

CONCLUSION: RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats.

Keywords: Energy homeostasis; Hedonic; Hypothalamus; Mesolimbic pathway; Roux-en-Y gastric bypass

References

  1. World J Surg. 1998 Sep;22(9):925-35 - PubMed
  2. Int J Obes Relat Metab Disord. 2001 Dec;25 Suppl 5:S42-7 - PubMed
  3. Endocrinology. 2011 Jul;152(7):2552-7 - PubMed
  4. Neuron. 1999 Aug;23 (4):775-86 - PubMed
  5. Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E122-31 - PubMed
  6. Neuroscience. 1996 Apr;71(3):735-45 - PubMed
  7. Am J Physiol. 1996 Oct;271(4 Pt 2):R848-56 - PubMed
  8. Int J Obes (Lond). 2012 Nov;36(11):1396-402 - PubMed
  9. Br J Pharmacol. 2013 Dec;170(7):1349-62 - PubMed
  10. Nature. 2000 Apr 6;404(6778):661-71 - PubMed
  11. J Comp Neurol. 1998 Dec 28;402(4):442-59 - PubMed
  12. Cell. 2001 Feb 23;104(4):531-43 - PubMed
  13. JPEN J Parenter Enteral Nutr. 2011 Mar;35(2):169-80 - PubMed
  14. Int J Obes (Lond). 2006 Mar;30(3):419-29 - PubMed
  15. Neuron. 1999 Feb;22(2):221-32 - PubMed
  16. PLoS One. 2011 Feb 22;6(2):e17339 - PubMed
  17. Neurosci Biobehav Rev. 2013 Nov;37(9 Pt A):1919-31 - PubMed
  18. Neurosignals. 2005;14(5):234-43 - PubMed
  19. Neuroscience. 1991;41(1):89-125 - PubMed
  20. Psychopharmacology (Berl). 1991;103(2):187-96 - PubMed
  21. Am J Physiol Regul Integr Comp Physiol. 2011 Oct;301(4):R1057-66 - PubMed
  22. Biol Chem. 2013 Aug;394(8):921-36 - PubMed
  23. Ann Surg. 1998 May;227(5):637-43; discussion 643-4 - PubMed
  24. Science. 1998 May 29;280(5368):1378-83 - PubMed
  25. Neuroscience. 1995 Aug;67(3):625-30 - PubMed
  26. Int J Obes (Lond). 2011 May;35(5):642-51 - PubMed
  27. Obes Surg. 2010 Mar;20(3):369-74 - PubMed
  28. Eur J Pharmacol. 2014 Oct 15;741:254-63 - PubMed
  29. Obesity (Silver Spring). 2014 May;22(5):E13-20 - PubMed
  30. Acta Pharmacol Sin. 2012 Feb;33(2):194-200 - PubMed
  31. Neuroscience. 2008 Jun 23;154(2):641-52 - PubMed
  32. Ann Surg. 2007 Nov;246(5):780-5 - PubMed
  33. Stress. 2014 Dec;17(6):484-93 - PubMed
  34. N Engl J Med. 2012 Apr 26;366(17):1577-85 - PubMed
  35. Gastroenterology. 2011 Sep;141(3):950-8 - PubMed
  36. J Am Coll Surg. 2004 Dec;199(6):887-95 - PubMed
  37. Endocrinol Metab Clin North Am. 2008 Dec;37(4):923-42 - PubMed
  38. J Clin Invest. 2014 Oct;124(10):4473-88 - PubMed
  39. Nature. 2006 Sep 21;443(7109):289-95 - PubMed
  40. J Neurosci. 1999 May 15;19(10):RC5 - PubMed
  41. Nature. 1996 Jan 4;379(6560):69-72 - PubMed
  42. Arch Intern Med. 2010 Sep 27;170(17):1566-75 - PubMed
  43. Neuroreport. 2000 Jan 17;11(1):117-21 - PubMed
  44. Prog Neurobiol. 2010 Nov;92(3):442-62 - PubMed
  45. Ann Surg. 2009 Feb;249(2):269-76 - PubMed
  46. J Comp Neurol. 2005 Dec 5;493(1):72-85 - PubMed
  47. Endocrinology. 2002 Oct;143(10):3905-15 - PubMed
  48. Neuroscience. 2012 May 3;209:128-35 - PubMed
  49. J Neurosci. 1999 Dec 15;19(24):11040-8 - PubMed
  50. PLoS One. 2013 Jun 11;8(6):e65696 - PubMed
  51. N Engl J Med. 2012 Apr 26;366(17):1567-76 - PubMed

Publication Types