Display options
Share it on

Philos Trans A Math Phys Eng Sci. 2016 May 13;374(2067). doi: 10.1098/rsta.2015.0189.

Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

Roberta Sclocco, Florian Beissner, Gaelle Desbordes, Jonathan R Polimeni, Lawrence L Wald, Norman W Kettner, Jieun Kim, Ronald G Garcia, Ville Renvall, Anna M Bianchi, Sergio Cerutti, Vitaly Napadow, Riccardo Barbieri

Affiliations

  1. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy Department of Radiology, Logan University, Chesterfield, MO, USA [email protected].
  2. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Somatosensory and Autonomic Therapy Research, Institute of Neuroradiology, Hannover Medical School, Hannover, Germany.
  3. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
  4. Department of Radiology, Logan University, Chesterfield, MO, USA.
  5. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
  6. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Masira Research Institute, School of Medicine, Universidad de Santander, Bucaramanga, Colombia.
  7. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
  8. Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy.
  9. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Radiology, Logan University, Chesterfield, MO, USA.
  10. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy.

PMID: 27044996 PMCID: PMC4822448 DOI: 10.1098/rsta.2015.0189

Abstract

Central autonomic control nuclei in the brainstem have been difficult to evaluate non-invasively in humans. We applied ultrahigh-field (7 T) functional magnetic resonance imaging (fMRI), and the improved spatial resolution it affords (1.2 mm isotropic), to evaluate putative brainstem nuclei that control and/or sense pain-evoked cardiovagal modulation (high-frequency heart rate variability (HF-HRV) instantaneously estimated through a point-process approach). The time-variant HF-HRV signal was used to guide the general linear model analysis of neuroimaging data. Sustained (6 min) pain stimulation reduced cardiovagal modulation, with the most prominent reduction evident in the first 2 min. Brainstem nuclei associated with pain-evoked HF-HRV reduction were previously implicated in both autonomic regulation and pain processing. Specifically, clusters consistent with the rostral ventromedial medulla, ventral nucleus reticularis (Rt)/nucleus ambiguus (NAmb) and pontine nuclei (Pn) were found when contrasting sustained pain versus rest. Analysis of the initial 2-min period identified Rt/NAmb and Pn, in addition to clusters consistent with the dorsal motor nucleus of the vagus/nucleus of the solitary tract and locus coeruleus. Combining high spatial resolution fMRI and high temporal resolution HF-HRV allowed for a non-invasive characterization of brainstem nuclei, suggesting that nociceptive afference induces pain-processing brainstem nuclei to function in concert with known premotor autonomic nuclei in order to affect the cardiovagal response to pain.

© 2016 The Author(s).

Keywords: autonomic nervous system; brainstem; cardiovagal; functional magnetic resonance imaging; pain; ultrahigh field

References

  1. Cereb Cortex. 2016 Feb;26(2):485-97 - PubMed
  2. Eur J Neurosci. 2007 Oct;26(8):2188-95 - PubMed
  3. Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17101-6 - PubMed
  4. Neuroimage. 2008 Apr 1;40(2):644-54 - PubMed
  5. Front Hum Neurosci. 2013 Oct 04;7:623 - PubMed
  6. Neuroimage. 2009 Mar 1;45(1):169-80 - PubMed
  7. Annu Rev Neurosci. 2002;25:433-69 - PubMed
  8. Neuroimage. 2008 Aug 1;42(1):169-77 - PubMed
  9. J Pain. 2005 Jun;6(6):341-7 - PubMed
  10. Curr Neuropharmacol. 2008 Sep;6(3):235-53 - PubMed
  11. Cephalalgia. 2005 Aug;25(8):605-11 - PubMed
  12. Arthritis Rheumatol. 2015 May;67(5):1395-405 - PubMed
  13. Magn Reson Med. 2016 Feb;75(2):665-79 - PubMed
  14. Neuroimage. 2005 May 15;26(1):243-50 - PubMed
  15. Front Hum Neurosci. 2014 Feb 28;8:116 - PubMed
  16. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7675-9 - PubMed
  17. Annu Rev Physiol. 1969;31:451-98 - PubMed
  18. Neuroimage. 2014 Feb 1;86:91-8 - PubMed
  19. Acta Neurol Scand. 2005 Feb;111(2):102-7 - PubMed
  20. J Comp Neurol. 2005 Dec 5;493(1):154-66 - PubMed
  21. Brain Res Bull. 2009 Mar 16;78(4-5):170-4 - PubMed
  22. Acta Paediatr. 2008 Jan;97(1):27-30 - PubMed
  23. NMR Biomed. 2006 May;19(3):342-51 - PubMed
  24. Pain. 2015 Aug;156(8):1555-65 - PubMed
  25. Brain Res Bull. 2013 Jul;96:39-44 - PubMed
  26. Magn Reson Imaging. 2009 Oct;27(8):1019-29 - PubMed
  27. Neuroimage. 2009 Feb 1;44(3):857-69 - PubMed
  28. Physiol Behav. 1990 Jan;47(1):217-8 - PubMed
  29. Circ Res. 1979 Jan;44(1):75-88 - PubMed
  30. Magn Reson Med. 2012 May;67(5):1210-24 - PubMed
  31. Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H424-35 - PubMed
  32. Brain Res Bull. 2003 Jul 15;61(2):117-23 - PubMed
  33. Neuroimage. 2007 Jan 15;34(2):542-9 - PubMed
  34. Neuroimage. 2006 Jul 15;31(4):1536-48 - PubMed
  35. Psychosom Med. 2010 Jun;72(5):462-70 - PubMed
  36. Clin Neurophysiol. 2001 Mar;112(3):532-5 - PubMed
  37. Neuroimage. 2003 Oct;20(2):1052-63 - PubMed
  38. J Neurosci. 2013 Jun 19;33(25):10503-11 - PubMed
  39. Neuroimage. 2011 Mar 15;55(2):597-606 - PubMed
  40. Baillieres Clin Neurol. 1997 Jul;6(2):227-44 - PubMed
  41. Semin Arthritis Rheum. 2000 Feb;29(4):217-27 - PubMed
  42. Cephalalgia. 2013 Apr;33(6):416-20 - PubMed
  43. Magn Reson Med. 1999 Jun;41(6):1236-45 - PubMed
  44. Comput Biomed Res. 1996 Jun;29(3):162-73 - PubMed
  45. Physiol Meas. 2007 Feb;28(2):149-59 - PubMed
  46. Biol Psychol. 2008 Feb;77(2):174-82 - PubMed
  47. J Psychosom Res. 2012 Jan;72(1):39-44 - PubMed

MeSH terms

Publication Types

Grant support