Display options
Share it on

Sci Rep. 2016 Mar 09;6:22834. doi: 10.1038/srep22834.

Recovery of Interdependent Networks.

Scientific reports

M A Di Muro, C E La Rocca, H E Stanley, S Havlin, L A Braunstein

Affiliations

  1. Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)-Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350 (7600) Mar del Plata, Argentina.
  2. Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA.
  3. Department of Physics, Bar Ilan University, Ramat Gan, Israel.

PMID: 26956773 PMCID: PMC4783785 DOI: 10.1038/srep22834

Abstract

Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 - p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ - p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse.

References

  1. Nature. 2000 Jul 27;406(6794):378-82 - PubMed
  2. Phys Rev Lett. 2000 Nov 20;85(21):4626-8 - PubMed
  3. Phys Rev Lett. 2001 Apr 2;86(14):3200-3 - PubMed
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128 - PubMed
  5. Phys Rev Lett. 2003 Oct 17;91(16):168701 - PubMed
  6. Phys Rev Lett. 2004 Aug 27;93(9):098701 - PubMed
  7. Nat Rev Genet. 2007 Jun;8(6):450-61 - PubMed
  8. Phys Rev Lett. 2010 Jan 8;104(1):018701 - PubMed
  9. Nature. 2010 Apr 15;464(7291):984-5 - PubMed
  10. Nature. 2010 Apr 15;464(7291):1025-8 - PubMed
  11. Phys Rev Lett. 2010 Jul 23;105(4):048701 - PubMed
  12. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1007-10 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3838-41 - PubMed
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016112 - PubMed
  15. Nature. 2011 May 12;473(7346):167-73 - PubMed
  16. Phys Rev Lett. 2011 Nov 4;107(19):195701 - PubMed
  17. Nat Commun. 2012 Feb 28;3:702 - PubMed
  18. Sci Rep. 2013;3:1969 - PubMed
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052812 - PubMed
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):050803 - PubMed
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042801 - PubMed
  22. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):669-72 - PubMed

Publication Types

Grant support