Display options
Share it on

Sci Rep. 2016 Apr 05;6:24007. doi: 10.1038/srep24007.

The topological Anderson insulator phase in the Kane-Mele model.

Scientific reports

Christoph P Orth, Tibor Sekera, Christoph Bruder, Thomas L Schmidt

Affiliations

  1. Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
  2. Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg.

PMID: 27045779 PMCID: PMC4820742 DOI: 10.1038/srep24007

Abstract

It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

References

  1. Science. 2007 Nov 2;318(5851):766-70 - PubMed
  2. Nano Lett. 2007 Jun;7(6):1643-8 - PubMed
  3. Phys Rev Lett. 2015 Sep 25;115(13):136802 - PubMed
  4. Nature. 2008 Apr 24;452(7190):970-4 - PubMed
  5. Nature. 2014 Nov 13;515(7526):237-40 - PubMed
  6. Phys Rev Lett. 2010 Nov 19;105(21):216601 - PubMed
  7. Phys Rev Lett. 2005 Nov 25;95(22):226801 - PubMed
  8. Phys Rev Lett. 2015 Feb 6;114(5):056801 - PubMed
  9. Phys Rev Lett. 2012 Sep 14;109(11):116803 - PubMed
  10. Science. 2006 Dec 15;314(5806):1757-61 - PubMed
  11. Phys Rev Lett. 2013 Sep 27;111(13):136804 - PubMed
  12. Phys Rev Lett. 2011 Sep 23;107(13):136603 - PubMed
  13. Phys Rev Lett. 2015 Sep 25;115(13):136804 - PubMed
  14. Phys Rev Lett. 2009 Apr 3;102(13):136806 - PubMed
  15. Nat Mater. 2015 Oct;14(10):1020-5 - PubMed
  16. Phys Rev Lett. 2005 Sep 30;95(14):146802 - PubMed
  17. Phys Rev Lett. 2015 Mar 20;114(11):114301 - PubMed
  18. Phys Rev Lett. 2009 Nov 6;103(19):196805 - PubMed
  19. Phys Rev Lett. 2013 Jan 25;110(4):046402 - PubMed

Publication Types