Display options
Share it on

Nat Commun. 2016 Apr 05;7:11243. doi: 10.1038/ncomms11243.

Generation of large coherent states by bang-bang control of a trapped-ion oscillator.

Nature communications

J Alonso, F M Leupold, Z U Solèr, M Fadel, M Marinelli, B C Keitch, V Negnevitsky, J P Home

Affiliations

  1. Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland.

PMID: 27046513 PMCID: PMC4822070 DOI: 10.1038/ncomms11243

Abstract

Fast control of quantum systems is essential to make use of quantum properties before they degrade by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems towards the boundary between quantum and classical physics. 'Bang-bang' control attains the ultimate speed limit by making large changes to control fields much faster than the system can respond, but is often challenging to implement experimentally. Here we demonstrate bang-bang control of a trapped-ion oscillator using nanosecond switching of the trapping potentials. We perform controlled displacements with which we realize coherent states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for trapped-ion quantum information processing.

References

  1. Phys Rev Lett. 1990 Sep 10;65(11):1317-1320 - PubMed
  2. Phys Rev Lett. 1996 Mar 11;76(11):1796-1799 - PubMed
  3. Phys Rev Lett. 1996 Dec 9;77(24):4887-4890 - PubMed
  4. Phys Rev Lett. 2000 Dec 25;85(26 Pt 1):5547-50 - PubMed
  5. Nature. 2002 Jun 13;417(6890):709-11 - PubMed
  6. Phys Rev Lett. 2009 Jul 24;103(4):040502 - PubMed
  7. Phys Rev Lett. 2010 Mar 12;104(10):100503 - PubMed
  8. Phys Rev Lett. 2010 Aug 27;105(9):090502 - PubMed
  9. Phys Rev Lett. 2012 Aug 24;109(8):080501 - PubMed
  10. Phys Rev Lett. 2012 Aug 24;109(8):080502 - PubMed
  11. Rev Sci Instrum. 2014 Jun;85(6):063101 - PubMed
  12. Phys Rev Lett. 2013 May 17;110(20):203001 - PubMed
  13. Science. 2015 Jan 2;347(6217):53-6 - PubMed
  14. Nature. 2015 May 21;521(7552):336-9 - PubMed
  15. J Res Natl Inst Stand Technol. 1998 May-Jun;103(3):259-328 - PubMed
  16. Phys Rev A. 1993 May;47(5):3554-3570 - PubMed

Publication Types