Display options
Share it on

Front Microbiol. 2016 Mar 21;7:316. doi: 10.3389/fmicb.2016.00316. eCollection 2016.

Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales, Phaeophyceae) and Their Potential for Induction of Rapid Coral Bleaching in Acropora muricata.

Frontiers in microbiology

Christophe Vieira, Aschwin H Engelen, Linda Guentas, Tânia Aires, Fanny Houlbreque, Julie Gaubert, Ester A Serrão, Olivier De Clerck, Claude E Payri

Affiliations

  1. IFD, Sorbonne Universités, UPMC Univ Paris 06Paris, France; UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le DéveloppementNouméa, New Caledonia; Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent UniversityGhent, Belgium.
  2. Centre of Marine Sciences, University of the Algarve Portugal.
  3. Laboratoire MAPIEM EA 4323, Université de ToulonLa Garde, France; Laboratoire LIVE, Université de Nouvelle-CalédonieNouméa, New Caledonia.
  4. UMR ENTROPIE (UR, IRD, Centre National de la Recherche Scientifique), Institut de Recherche pour le Développement Nouméa, New Caledonia.
  5. Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University Ghent, Belgium.

PMID: 27047453 PMCID: PMC4800410 DOI: 10.3389/fmicb.2016.00316

Abstract

While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.

Keywords: Illumina sequencing; Lobophora; coral bleaching; in situ bioassay; macroalgal bacterial assemblage; macroalgal culturable epibacteria; macroalgal–coral interaction

References

  1. Microb Ecol. 2007 May;53(4):683-99 - PubMed
  2. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6916-21 - PubMed
  3. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  4. Oecologia. 2009 Mar;159(2):325-36 - PubMed
  5. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8007-12 - PubMed
  6. Eukaryot Cell. 2006 Aug;5(8):1175-83 - PubMed
  7. PLoS One. 2012;7(9):e44246 - PubMed
  8. Nature. 2005 Nov 3;438(7064):90-3 - PubMed
  9. FEMS Microbiol Ecol. 2009 Sep;69(3):384-94 - PubMed
  10. Integr Comp Biol. 2010 Oct;50(4):662-74 - PubMed
  11. FEMS Microbiol Rev. 2013 May;37(3):462-76 - PubMed
  12. PLoS One. 2009;4(4):e5239 - PubMed
  13. PLoS One. 2013 Dec 31;8(12):e83746 - PubMed
  14. ISME J. 2009 May;3(5):512-21 - PubMed
  15. Environ Microbiol. 2013 Jul;15(7):2063-72 - PubMed
  16. Appl Environ Microbiol. 2008 Dec;74(23):7356-64 - PubMed
  17. PLoS One. 2013 Jul 31;8(7):e69717 - PubMed
  18. Nat Rev Microbiol. 2007 May;5(5):355-62 - PubMed
  19. Appl Environ Microbiol. 2004 Nov;70(11):6855-64 - PubMed
  20. Environ Microbiol. 2006 Dec;8(12):2068-73 - PubMed
  21. Proc Biol Sci. 2013 Jan 08;280(1754):20122659 - PubMed
  22. Genome Res. 2011 Mar;21(3):494-504 - PubMed
  23. Appl Environ Microbiol. 1995 Jun;61(6):2439-41 - PubMed
  24. Philos Trans R Soc Lond B Biol Sci. 2007 Jul 29;362(1483):1223--33 - PubMed
  25. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 - PubMed
  26. Trends Microbiol. 2009 Dec;17(12):554-62 - PubMed
  27. Microbiologyopen. 2013 Apr;2(2):338-49 - PubMed
  28. Nat Methods. 2010 May;7(5):335-6 - PubMed
  29. Proc Biol Sci. 2012 Apr 22;279(1733):1655-64 - PubMed
  30. J Phycol. 2014 Jun;50(3):493-505 - PubMed
  31. Environ Microbiol. 2003 Jan;5(1):25-35 - PubMed
  32. PLoS One. 2012;7(9):e44859 - PubMed
  33. FEMS Microbiol Ecol. 2013 Jan;83(1):1-16 - PubMed
  34. Commun Integr Biol. 2010 Nov;3(6):564-6 - PubMed
  35. Sci Rep. 2016 Jan 05;6:18637 - PubMed
  36. Environ Microbiol. 2011 May;13(5):1192-204 - PubMed
  37. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  38. PLoS Biol. 2010 Mar 30;8(3):e1000345 - PubMed
  39. Science. 1994 Sep 9;265(5178):1547-51 - PubMed
  40. PLoS One. 2013;8(2):e56329 - PubMed
  41. ISME J. 2008 Apr;2(4):350-63 - PubMed
  42. ISME J. 2012 Mar;6(3):610-8 - PubMed
  43. Trends Microbiol. 2012 Dec;20(12):621-8 - PubMed
  44. J Phycol. 2014 Dec;50(6):1101-19 - PubMed
  45. PLoS One. 2010 Apr 29;5(4):e10401 - PubMed
  46. Ecol Lett. 2006 Jul;9(7):835-45 - PubMed

Publication Types