Display options
Share it on

Front Plant Sci. 2016 Mar 22;7:301. doi: 10.3389/fpls.2016.00301. eCollection 2016.

Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches.

Frontiers in plant science

Ibrahim I Ozyigit, Ertugrul Filiz, Recep Vatansever, Kuaybe Y Kurtoglu, Ibrahim Koc, Münir X Öztürk, Naser A Anjum

Affiliations

  1. Department of Biology, Faculty of Science and Arts, Marmara University Istanbul, Turkey.
  2. Department of Crop and Animal Production, Cilimli Vocational School, Düzce University Düzce, Turkey.
  3. Department of Biology, Faculty of Science and Arts, Marmara UniversityIstanbul, Turkey; Department of Molecular Biology and Genetics, Faculty of Science, Istanbul Medeniyet UniversityIstanbul, Turkey.
  4. Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University Kocaeli, Turkey.
  5. Botany Department/Center for Environmental Studies, Ege UniversityIzmir, Turkey; Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia.
  6. Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal.

PMID: 27047498 PMCID: PMC4802093 DOI: 10.3389/fpls.2016.00301

Abstract

Among major reactive oxygen species (ROS), hydrogen peroxide (H2O2) exhibits dual roles in plant metabolism. Low levels of H2O2 modulate many biological/physiological processes in plants; whereas, its high level can cause damage to cell structures, having severe consequences. Thus, steady-state level of cellular H2O2 must be tightly regulated. Glutathione peroxidases (GPX) and ascorbate peroxidase (APX) are two major ROS-scavenging enzymes which catalyze the reduction of H2O2 in order to prevent potential H2O2-derived cellular damage. Employing bioinformatics approaches, this study presents a comparative evaluation of both GPX and APX in 18 different plant species, and provides valuable insights into the nature and complex regulation of these enzymes. Herein, (a) potential GPX and APX genes/proteins from 18 different plant species were identified, (b) their exon/intron organization were analyzed, (c) detailed information about their physicochemical properties were provided, (d) conserved motif signatures of GPX and APX were identified, (e) their phylogenetic trees and 3D models were constructed, (f) protein-protein interaction networks were generated, and finally (g) GPX and APX gene expression profiles were analyzed. Study outcomes enlightened GPX and APX as major H2O2-scavenging enzymes at their structural and functional levels, which could be used in future studies in the current direction.

Keywords: ROS; antioxidant; chloroplast; mitochondria; peroxisome; signal transduction

References

  1. Nature. 1999 Dec 16;402(6763):761-8 - PubMed
  2. Nature. 1999 Dec 16;402(6763):769-77 - PubMed
  3. Plant Cell Physiol. 2000 Jun;41(6):666-75 - PubMed
  4. FEBS Lett. 2000 Sep 1;480(2-3):271-6 - PubMed
  5. Nature. 2000 Dec 14;408(6814):816-20 - PubMed
  6. Nature. 2000 Dec 14;408(6814):820-2 - PubMed
  7. Curr Opin Plant Biol. 2002 Feb;5(1):43-8 - PubMed
  8. Mol Biol Evol. 2002 Mar;19(3):256-62 - PubMed
  9. Plant Physiol. 2002 Jun;129(2):838-53 - PubMed
  10. J Biol Chem. 2002 Aug 23;277(34):30859-69 - PubMed
  11. Plant Mol Biol. 2002 Jul;49(5):515-32 - PubMed
  12. Proteins. 2003 Feb 15;50(3):437-50 - PubMed
  13. J Biol Chem. 2003 Nov 21;278(47):46869-77 - PubMed
  14. Plant J. 2003 Dec;36(5):602-15 - PubMed
  15. Plant J. 2003 Nov;36(4):433-42 - PubMed
  16. Plant J. 2004 Jan;37(1):104-14 - PubMed
  17. J Biol Chem. 2004 Mar 19;279(12):11736-43 - PubMed
  18. Plant Physiol. 2004 Feb;134(2):605-13 - PubMed
  19. Plant Mol Biol. 1992 Feb;18(3):623-7 - PubMed
  20. Annu Rev Plant Biol. 2004;55:373-99 - PubMed
  21. Trends Plant Sci. 2004 Oct;9(10):490-8 - PubMed
  22. J Mol Evol. 2004 Dec;59(6):761-70 - PubMed
  23. Plant Cell. 2005 Jan;17(1):268-81 - PubMed
  24. Free Radic Biol Med. 2005 Jun 1;38(11):1413-21 - PubMed
  25. Planta. 2005 Nov;222(5):926-32 - PubMed
  26. Plant Physiol. 2005 Sep;139(1):88-100 - PubMed
  27. J Plant Physiol. 2005 Aug;162(8):854-64 - PubMed
  28. J Biol Chem. 2005 Dec 23;280(51):42078-87 - PubMed
  29. Plant J. 2005 Nov;44(4):653-68 - PubMed
  30. Planta. 2006 Jul;224(2):300-14 - PubMed
  31. Proteins. 2006 Aug 15;64(3):643-51 - PubMed
  32. J Exp Bot. 2006;57(12):3033-42 - PubMed
  33. Plant Physiol. 2006 Dec;142(4):1364-79 - PubMed
  34. J Biol Chem. 2007 Jan 12;282(2):1183-92 - PubMed
  35. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 - PubMed
  36. Mol Genet Genomics. 2008 Feb;279(2):171-82 - PubMed
  37. Biosci Biotechnol Biochem. 2008 May;72(5):1143-54 - PubMed
  38. Biochem J. 2008 Aug 15;414(1):53-61 - PubMed
  39. J Biol Chem. 2008 Dec 5;283(49):34197-203 - PubMed
  40. Nucleic Acids Res. 2009 Jan;37(Database issue):D261-6 - PubMed
  41. J Proteomics. 2009 Apr 13;72(3):439-51 - PubMed
  42. Nat Protoc. 2009;4(3):363-71 - PubMed
  43. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 - PubMed
  44. Adv Bioinformatics. 2008;2008:420747 - PubMed
  45. Bioinformatics. 2011 Feb 1;27(3):431-2 - PubMed
  46. Antioxid Redox Signal. 2011 Aug 15;15(4):1129-59 - PubMed
  47. Plant Cell. 2011 Jan;23(1):364-80 - PubMed
  48. New Phytol. 2011 Jul;191(1):234-50 - PubMed
  49. Plant Sci. 2011 Mar;180(3):548-53 - PubMed
  50. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W24-8 - PubMed
  51. J Proteome Res. 2012 Jan 1;11(1):425-37 - PubMed
  52. Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86 - PubMed
  53. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131 - PubMed
  54. Photosynth Res. 2012 Mar;111(3):261-8 - PubMed
  55. AoB Plants. 2012;2012:pls014 - PubMed
  56. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 - PubMed
  57. Genet Mol Biol. 2012 Dec;35(4 (suppl)):1011-9 - PubMed
  58. Plant Sci. 2013 Jul;208:93-101 - PubMed
  59. J Plant Physiol. 2014 Jan 1;171(1):65-75 - PubMed
  60. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  61. PLoS One. 2013 Dec 12;8(12):e83466 - PubMed
  62. BMC Plant Biol. 2014 Jan 06;14:4 - PubMed
  63. Int J Mol Sci. 2014 Feb 21;15(2):3319-35 - PubMed
  64. Protoplasma. 2014 Nov;251(6):1265-83 - PubMed
  65. Mol Biol Rep. 2014 Aug;41(8):4919-27 - PubMed
  66. J Biol Chem. 2014 Jun 6;289(23):15980-5 - PubMed
  67. Environ Sci Pollut Res Int. 2015 Mar;22(6):4099-121 - PubMed
  68. Bioinformatics. 2015 Apr 15;31(8):1296-7 - PubMed
  69. J Plant Physiol. 2015 Mar 15;176:192-201 - PubMed
  70. Plant Physiol. 2015 Apr;167(4):1604-15 - PubMed
  71. J Exp Bot. 2015 May;66(10):2979-90 - PubMed
  72. J Exp Bot. 2015 May;66(10):2913-21 - PubMed
  73. Int J Mol Sci. 2015 Jun 12;16(6):13561-78 - PubMed
  74. Front Plant Sci. 2015 Jun 16;6:420 - PubMed
  75. Environ Microbiol. 2016 Mar;18(3):923-35 - PubMed
  76. PLoS One. 2015 Nov 23;10(11):e0143344 - PubMed
  77. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 - PubMed
  78. J Integr Plant Biol. 2016 Aug;58(8):737-48 - PubMed
  79. Bot Stud. 2014 Dec;55(1):7 - PubMed
  80. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 - PubMed
  81. Plant Mol Biol. 1996 Sep;31(6):1093-104 - PubMed
  82. Biochem J. 1997 Sep 1;326 ( Pt 2):305-10 - PubMed
  83. Plant Cell Physiol. 1998 Jan;39(1):23-34 - PubMed
  84. Plant Mol Biol. 1998 Apr;36(6):833-45 - PubMed
  85. Plant J. 1998 Feb;13(3):375-9 - PubMed
  86. Plant Physiol. 1998 Nov;118(3):1005-14 - PubMed

Publication Types