Display options
Share it on

Front Plant Sci. 2016 Mar 24;7:369. doi: 10.3389/fpls.2016.00369. eCollection 2016.

Reactive Nitrogen Species in Mitochondria and Their Implications in Plant Energy Status and Hypoxic Stress Tolerance.

Frontiers in plant science

Kapuganti Jagadis Gupta, Abir U Igamberdiev

Affiliations

  1. National Institute of Plant Genome Research New Delhi, India.
  2. Department of Biology, Memorial University of Newfoundland, St. John's NL, Canada.

PMID: 27047533 PMCID: PMC4806263 DOI: 10.3389/fpls.2016.00369

Abstract

Hypoxic and anoxic conditions result in the energy crisis that leads to cell damage. Since mitochondria are the primary organelles for energy production, the support of these organelles in a functional state is an important task during oxygen deprivation. Plant mitochondria adapted the strategy to survive under hypoxia by keeping electron transport operative even without oxygen via the use of nitrite as a terminal electrons acceptor. The process of nitrite reduction to nitric oxide (NO) in the mitochondrial electron transport chain recycles NADH and leads to a limited rate of ATP production. The produced ATP alongside with the ATP generated by fermentation supports the processes of transcription and translation required for hypoxic survival and recovery of plants. Non-symbiotic hemoglobins (called phytoglobins in plants) scavenge NO and thus contribute to regeneration of NAD(+) and nitrate required for the operation of anaerobic energy metabolism. This overall operation represents an important strategy of biochemical adaptation that results in the improvement of energy status and thereby in protection of plants in the conditions of hypoxic stress.

Keywords: hypoxia; mitochondria; nitric oxide; peroxynitrite; superoxide

References

  1. Plant Physiol. 2014 Feb;164(2):637-53 - PubMed
  2. FEBS Lett. 1999 Jul 2;454(1-2):127-30 - PubMed
  3. Plant J. 2008 Dec;56(5):743-55 - PubMed
  4. Trends Biochem Sci. 2002 Nov;27(11):564-72 - PubMed
  5. Mitochondrion. 2014 Nov;19 Pt B:329-33 - PubMed
  6. Plant Physiol. 1987 Oct;85(2):474-80 - PubMed
  7. IUBMB Life. 2011 Mar;63(3):146-52 - PubMed
  8. New Phytol. 2007;176(4):813-23 - PubMed
  9. Trends Biochem Sci. 2002 Jan;27(1):33-9 - PubMed
  10. Front Plant Sci. 2015 Nov 09;6:977 - PubMed
  11. Cell Metab. 2006 Apr;3(4):277-87 - PubMed
  12. Plant Physiol. 1986 Sep;82(1):236-40 - PubMed
  13. Plant Physiol. 2010 Oct;154(2):691-704 - PubMed
  14. J Exp Bot. 2012 Jul;63(12):4389-402 - PubMed
  15. Plant Cell Physiol. 2007 Jul;48(7):1022-35 - PubMed
  16. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11715-20 - PubMed
  17. J Exp Bot. 2004 Dec;55(408):2625-34 - PubMed
  18. Plant Physiol. 1992 Feb;98(2):411-21 - PubMed
  19. Trends Plant Sci. 2012 Mar;17(3):129-38 - PubMed
  20. Mol Plant. 2014 Apr;7(4):747-50 - PubMed
  21. Plant Cell Physiol. 2008 Jul;49(7):1039-55 - PubMed
  22. J Exp Bot. 2012 Jul;63(12):4375-87 - PubMed
  23. Front Plant Sci. 2013 Oct 01;4:349 - PubMed
  24. Trends Endocrinol Metab. 2009 Sep;20(7):332-40 - PubMed
  25. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11127-32 - PubMed
  26. Exp Physiol. 2006 Sep;91(5):807-19 - PubMed
  27. J Exp Bot. 2005 Oct;56(420):2601-9 - PubMed
  28. J Exp Bot. 2004 Dec;55(408):2473-82 - PubMed
  29. Plant Cell Environ. 2014 Oct;37(10):2260-77 - PubMed
  30. Plant J. 2005 Mar;41(5):732-43 - PubMed
  31. Ann Bot. 2009 Jan;103(2):259-68 - PubMed
  32. Plant Physiol. 2011 Feb;155(2):1023-36 - PubMed
  33. J Biol Chem. 2002 Apr 19;277(16):13556-62 - PubMed
  34. Ann Bot. 2011 Aug;108(2):253-61 - PubMed
  35. FEBS Lett. 2004 Oct 8;576(1-2):151-5 - PubMed
  36. J Exp Bot. 2011 Feb;62(4):1349-59 - PubMed
  37. Nitric Oxide. 2009 Sep;21(2):132-9 - PubMed
  38. J Biol Chem. 2007 May 25;282(21):15619-31 - PubMed
  39. J Exp Bot. 2014 Feb;65(2):527-38 - PubMed
  40. Plant Cell Physiol. 2010 Apr;51(4):576-84 - PubMed
  41. Plant Physiol. 2015 Apr;167(4):1604-15 - PubMed
  42. Planta. 2006 Apr;223(5):1033-40 - PubMed
  43. Ann Bot. 2003 Jan;91 Spec No:155-72 - PubMed
  44. J Biol Chem. 2008 Nov 21;283(47):32590-7 - PubMed
  45. J Exp Bot. 2013 Aug;64(11):3339-49 - PubMed
  46. Mitochondrion. 2008 Jan;8(1):47-60 - PubMed
  47. Plant Physiol. 2007 May;144(1):218-31 - PubMed
  48. Plant J. 2011 Apr;66(1):161-81 - PubMed
  49. Biochem J. 2009 Jan 1;417(1):1-13 - PubMed
  50. Annu Rev Plant Biol. 2008;59:313-39 - PubMed
  51. Biosystems. 2011 Feb;103(2):302-8 - PubMed
  52. Mitochondrion. 2011 Jul;11(4):537-43 - PubMed
  53. Plant Physiol Biochem. 2005 Jun;43(6):623-35 - PubMed
  54. Planta. 2007 Jul;226(2):465-74 - PubMed

Publication Types