Display options
Share it on

Alzheimers Dement (N Y). 2016 Jan 01;2(1):30-44. doi: 10.1016/j.trci.2015.12.002.

A Genetics-based Biomarker Risk Algorithm for Predicting Risk of Alzheimer's Disease.

Alzheimer's & dementia (New York, N. Y.)

Michael W Lutz, Scott S Sundseth, Daniel K Burns, Ann M Saunders, Kathleen M Hayden, James R Burke, Kathleen A Welsh-Bohmer, Allen D Roses

Affiliations

  1. Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina; Department of Neurology, Duke University Medical Center, Durham, North Carolina.
  2. Cabernet Pharmaceuticals, Durham, North Carolina.
  3. Zinfandel Pharmaceuticals, Durham, North Carolina.
  4. Department of Social Sciences and Health Policy, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.
  5. Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina; Department of Neurology, Duke University Medical Center, Durham, North Carolina; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.
  6. Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University Medical Center, Durham, North Carolina; Department of Neurology, Duke University Medical Center, Durham, North Carolina; Cabernet Pharmaceuticals, Durham, North Carolina; Zinfandel Pharmaceuticals, Durham, North Carolina.

PMID: 27047990 PMCID: PMC4817110 DOI: 10.1016/j.trci.2015.12.002

Abstract

BACKGROUND: A straightforward, reproducible blood-based test that predicts age dependent risk of Alzheimer's disease (AD) could be used as an enrichment tool for clinical development of therapies. This study evaluated the prognostic performance of a genetics-based biomarker risk algorithm (GBRA) established on a combination of Apolipoprotein E (APOE)/Translocase of outer mitochondrial membrane 40 homolog (TOMM40) genotypes and age, then compare it to cerebrospinal fluid (CSF) biomarkers, neuroimaging and neurocognitive tests using data from two independent AD cohorts.

METHODS: The GBRA was developed using data from the prospective Bryan-ADRC study (n=407; 86 conversion events (mild cognitive impairment (MCI) or late onset Alzheimer's disease (LOAD)). The performance of the algorithm was tested using data from the ADNI study (n=660; 457 individuals categorized as MCI or LOAD).

RESULTS: The positive predictive values (PPV) and negative predictive values (NPV) of the GBRA are in the range of 70-80%. The relatively high odds ratio (approximately 3-5) and significant net reclassification index (NRI) scores comparing the GBRA to a version based on APOE and age alone support the value of the GBRA in risk prediction for MCI due to LOAD. Performance of the GBRA compares favorably with CSF and imaging (fMRI) biomarkers. In addition, the GBRA "high" and "low" AD-risk categorizations correlated well with pathological CSF biomarker levels, PET amyloid burden and neurocognitive scores.

CONCLUSIONS: Unlike dynamic markers (i.e., imaging, protein or lipid markers) that may be influenced by factors unrelated to disease, genomic DNA is easily collected, stable, and the technical methods for measurement are robust, inexpensive, and widely available. The performance characteristics of the GBRA support its use as a pharmacogenetic enrichment tool for LOAD delay of onset clinical trials, and merits further evaluation for its clinical utility in evaluating therapeutic efficacy.

References

  1. Alzheimers Dement. 2012 Nov;8(6):560-3 - PubMed
  2. Alzheimer Dis Assoc Disord. 2009 Apr-Jun;23(2):91-101 - PubMed
  3. Neurology. 2007 Mar 13;68(11):828-36 - PubMed
  4. Epidemiology. 2014 Jan;25(1):114-21 - PubMed
  5. Dementia. 1994 Mar-Apr;5(2):99-105 - PubMed
  6. Alzheimers Dement. 2012 Nov;8(6):490-5 - PubMed
  7. Curr Opin Pharmacol. 2014 Feb;14 :81-9 - PubMed
  8. J Alzheimers Dis. 2012;32(2):373-85 - PubMed
  9. Arch Neurol. 2012 Oct;69(10 ):1310-7 - PubMed
  10. Curr Alzheimer Res. 2014;11(8):773-84 - PubMed
  11. Neurology. 1993 Nov;43(11):2412-4 - PubMed
  12. Alzheimers Dement. 2011 Jul;7(4):456-65 - PubMed
  13. Neurology. 2010 Jul 20;75(3):230-8 - PubMed
  14. Nat Rev Drug Discov. 2010 Jul;9(7):560-74 - PubMed
  15. Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 - PubMed
  16. Alzheimers Dement. 2014 May;10(3):336-48 - PubMed
  17. Arch Gen Psychiatry. 2011 Sep;68(9):961-9 - PubMed
  18. Lancet Neurol. 2006 Mar;5(3):228-34 - PubMed
  19. Alzheimers Dement. 2012 Sep;8(5):381-8 - PubMed
  20. J Neurol Neurosurg Psychiatry. 2002 Apr;72(4):491-7 - PubMed
  21. Alzheimers Dement. 2013 Sep;9(5):554-61 - PubMed
  22. J Alzheimers Dis. 2008 May;14(1):51-7 - PubMed
  23. Clin Pharmacol Ther. 2013 Feb;93(2):177-85 - PubMed
  24. Eur Neuropsychopharmacol. 2011 Nov;21(11):781-8 - PubMed
  25. Alzheimers Dement. 2011 May;7(3):270-9 - PubMed
  26. Hum Brain Mapp. 2015 Jul;36(7):2826-41 - PubMed
  27. Alzheimers Dement. 2013 Mar;9(2):132-6 - PubMed
  28. Arch Neurol. 2012 Oct;69(10):1270-9 - PubMed
  29. BMJ Open. 2013 Jun 20;3(6):null - PubMed
  30. Nat Rev Neurol. 2014 Nov;10(11):618-9 - PubMed
  31. JAMA. 2009 Jul 22;302(4):385-93 - PubMed
  32. Eur Neuropsychopharmacol. 2014 Sep;24(9):1492-9 - PubMed
  33. Arch Neurol. 2011 Aug;68(8):1013-9 - PubMed
  34. J Hum Genet. 2012 Jan;57(1):18-25 - PubMed
  35. Alzheimers Dement. 2011 May;7(3):280-92 - PubMed
  36. Dement Geriatr Cogn Disord. 2009;27(5):458-64 - PubMed
  37. Neurology. 1984 Jul;34(7):939-44 - PubMed
  38. Alzheimers Dement. 2011 Jan;7(1):15-34 - PubMed

Publication Types

Grant support