Display options
Share it on

Catal Sci Technol. 2016 Jan 07;6(1):169-177. doi: 10.1039/c5cy01642h. Epub 2015 Oct 26.

Light-driven biocatalytic reduction of α,β-unsaturated compounds by ene reductases employing transition metal complexes as photosensitizers.

Catalysis science & technology

Martyn K Peers, Helen S Toogood, Derren J Heyes, David Mansell, Benjamin J Coe, Nigel S Scrutton

Affiliations

  1. Manchester Institute of Biotechnology , Faculty of Life Sciences , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK . Email: [email protected].
  2. School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK.

PMID: 27019691 PMCID: PMC4786955 DOI: 10.1039/c5cy01642h

Abstract

Efficient and cost effective nicotinamide cofactor regeneration is essential for industrial-scale bio-hydrogenations employing flavin-containing biocatalysts such as the Old Yellow Enzymes. A direct flavin regeneration system using visible light to initiate a photoredox cycle and drive biocatalysis is described, and shown to be effective in driving biocatalytic activated alkene reduction. Using Ru(ii) or Ir(iii) complexes as photosensitizers, coupled with an electron transfer mediator (methyl viologen) and sacrificial electron donor (triethanolamine) drives catalytic turnover of two Old Yellow Enzymes with multiple oxidative substrates. Therefore, there is great potential in the development of light-driven biocatalytic systems, providing an alternative to the reliance on enzyme-based cofactor regeneration systems.

References

  1. Dalton Trans. 2015 Dec 21;44(47):20392-405 - PubMed
  2. Biochemistry. 1991 Oct 1;30(39):9450-7 - PubMed
  3. Chem Commun (Camb). 2009 Feb 7;(5):550-2 - PubMed
  4. J Org Chem. 1997 Oct 17;62(21):7512-7515 - PubMed
  5. Adv Synth Catal. 2009 Nov;351(17):2976-2990 - PubMed
  6. Biochemistry. 2003 Mar 18;42(10):2816-24 - PubMed
  7. Chem Commun (Camb). 2009 Mar 7;(9):1124-6 - PubMed
  8. Biotechnol Bioeng. 2013 Dec;110(12):3085-92 - PubMed
  9. Biosci Biotechnol Biochem. 1992 May;56(5):701-3 - PubMed
  10. Biochemistry. 2007 Dec 18;46(50):14610-8 - PubMed
  11. Chem Rev. 2011 Jul 13;111(7):4111-40 - PubMed
  12. Chembiochem. 2008 Mar 3;9(4):565-72 - PubMed
  13. Dalton Trans. 2015 Sep 21;44(35):15420-3 - PubMed
  14. Adv Synth Catal. 2008 Nov 17;350(17):2789-2803 - PubMed
  15. Biochemistry. 2002 Sep 24;41(38):11315-24 - PubMed
  16. Chembiochem. 2010 Nov 22;11(17):2433-47 - PubMed
  17. J Am Chem Soc. 2005 May 25;127(20):7502-10 - PubMed
  18. Dalton Trans. 2010 Sep 28;39(36):8472-6 - PubMed
  19. Curr Opin Chem Biol. 2014 Apr;19:107-15 - PubMed
  20. Biochemistry. 1997 Dec 16;36(50):15823-7 - PubMed
  21. Chembiochem. 2010 Jan 25;11(2):197-207 - PubMed
  22. Chembiochem. 2012 Jun 18;13(9):1278-82 - PubMed
  23. J Mol Biol. 2001 Jul 6;310(2):433-47 - PubMed
  24. Angew Chem Int Ed Engl. 2002 Sep 2;41(17):3257-9 - PubMed
  25. J Am Chem Soc. 2012 Jul 18;134(28):11455-61 - PubMed
  26. Org Lett. 2013 Jan 4;15(1):180-3 - PubMed

Publication Types

Grant support