Display options
Share it on

Ann Intensive Care. 2016 Dec;6(1):32. doi: 10.1186/s13613-016-0134-8. Epub 2016 Apr 14.

Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study.

Annals of intensive care

Pedro Póvoa, Ignacio Martin-Loeches, Paula Ramirez, Lieuwe D Bos, Mariano Esperatti, Joana Silvestre, Gisela Gili, Gema Goma, Eugenio Berlanga, Mateu Espasa, Elsa Gonçalves, Antoni Torres, Antonio Artigas

Affiliations

  1. Polyvalent Intensive Care Unit, Centro Hospitalar de Lisboa Ocidental, São Francisco Xavier Hospital, Estrada do Forte do Alto do Duque, 1449-005, Lisbon, Portugal. [email protected].
  2. NOVA Medical School, CEDOC, New University of Lisbon, Lisbon, Portugal. [email protected].
  3. Critical Care Center, Sabadell Hospital, Corporación Sanitaria Universitaria Parc Taulí, Universitat Autonoma de Barcelona, Sabadell, Spain.
  4. CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
  5. Intensive Care Unit, University Hospital La Fe, Valencia, Spain.
  6. Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
  7. Respiratory Disease Department, Hospital Clínic i Provincial de Barcelona, IDIBAPS, Barcelona, Spain.
  8. Polyvalent Intensive Care Unit, Centro Hospitalar de Lisboa Ocidental, São Francisco Xavier Hospital, Estrada do Forte do Alto do Duque, 1449-005, Lisbon, Portugal.
  9. NOVA Medical School, CEDOC, New University of Lisbon, Lisbon, Portugal.
  10. Laboratory Department, UDIAT, Corporación Sanitaria Universitaria Parc Taulí, Sabadell, Spain.
  11. Microbiology Department, Centro Hospitalar de Lisboa Ocidental, Egas Moniz Hospital, Lisbon, Portugal.

PMID: 27076187 PMCID: PMC4830786 DOI: 10.1186/s13613-016-0134-8

Abstract

BACKGROUND: Prediction of diagnosis of ventilator-associated pneumonia (VAP) remains difficult. Our aim was to assess the value of biomarker kinetics in VAP prediction.

METHODS: We performed a prospective, multicenter, observational study to evaluate predictive accuracy of biomarker kinetics, namely C-reactive protein (CRP), procalcitonin (PCT), mid-region fragment of pro-adrenomedullin (MR-proADM), for VAP management in 211 patients receiving mechanical ventilation for >72 h. For the present analysis, we assessed all (N = 138) mechanically ventilated patients without an infection at admission. The kinetics of each variable, from day 1 to day 6 of mechanical ventilation, was assessed with each variable's slopes (rate of biomarker change per day), highest level and maximum amplitude of variation (Δ (max)).

RESULTS: A total of 35 patients (25.4 %) developed a VAP and were compared with 70 non-infected controls (50.7 %). We excluded 33 patients (23.9 %) who developed a non-VAP nosocomial infection. Among the studied biomarkers, CRP and CRP ratio showed the best performance in VAP prediction. The slope of CRP change over time (adjusted odds ratio [aOR] 1.624, confidence interval [CI]95% [1.206, 2.189], p = 0.001), the highest CRP ratio concentration (aOR 1.202, CI95% [1.061, 1.363], p = 0.004) and Δ (max) CRP (aOR 1.139, CI95% [1.039, 1.248], p = 0.006), during the first 6 days of mechanical ventilation, were all significantly associated with VAP development. Both PCT and MR-proADM showed a poor predictive performance as well as temperature and white cell count.

CONCLUSIONS: Our results suggest that in patients under mechanical ventilation, daily CRP monitoring was useful in VAP prediction. Trial registration NCT02078999.

Keywords: Biomarkers; C-reactive protein; Clinical Pulmonary Infection Score; Diagnosis; Mid-region fragment of pro-adrenomedullin; Prediction; Procalcitonin; Ventilator-associated pneumonia

References

  1. BMC Infect Dis. 2013 Apr 02;13:159 - PubMed
  2. Eur J Clin Invest. 2010 Apr;40(4):376-81 - PubMed
  3. J Natl Cancer Inst. 2013 Nov 20;105(22):1677-83 - PubMed
  4. Intensive Care Med. 2010 Jan;36(1):92-9 - PubMed
  5. BMC Infect Dis. 2009 Apr 22;9:49 - PubMed
  6. Crit Care. 2006;10(2):R63 - PubMed
  7. Clin Infect Dis. 2010 Aug 1;51 Suppl 1:S131-5 - PubMed
  8. Eur Respir J. 2005 May;25(5):804-12 - PubMed
  9. Crit Care Med. 1998 Nov;26(11):1793-800 - PubMed
  10. Clin Microbiol Infect. 2005 Feb;11(2):101-8 - PubMed
  11. Crit Care. 2010;14(1):203 - PubMed
  12. Am J Respir Crit Care Med. 2005 Feb 15;171(4):388-416 - PubMed
  13. Crit Care. 2006;10 (2):R53 - PubMed
  14. Intensive Care Med. 2005 Nov;31(11):1495-500 - PubMed
  15. Am Rev Respir Dis. 1991 May;143(5 Pt 1):1121-9 - PubMed
  16. Curr Opin Infect Dis. 2008 Apr;21(2):174-8 - PubMed
  17. Crit Care Med. 2011 Jun;39(6):1251-6 - PubMed
  18. Crit Care Med. 2003 Mar;31(3):676-82 - PubMed
  19. Intensive Care Med. 2010 May;36(5):790-8 - PubMed
  20. JAMA. 1993 Dec 22-29;270(24):2957-63 - PubMed
  21. Curr Opin Infect Dis. 2008 Apr;21(2):157-62 - PubMed
  22. Crit Care. 2013 Dec 11;17 (6):R291 - PubMed
  23. Intensive Care Med. 2008 Aug;34(8):1434-40 - PubMed
  24. Crit Care Med. 1999 Mar;27(3):498-504 - PubMed
  25. Crit Care. 2008;12(2):R56 - PubMed
  26. Crit Care. 2004 Feb;8(1):R12-20 - PubMed
  27. Intensive Care Med. 2010 Mar;36(3):528-32 - PubMed
  28. Eur Respir J. 2007 Sep;30(3):556-73 - PubMed
  29. Med Intensiva. 2014 May;38(4):226-36 - PubMed
  30. Crit Care. 2011 Jul 15;15(4):R169 - PubMed
  31. Crit Care. 2007;11(2):R38 - PubMed
  32. Expert Rev Anti Infect Ther. 2010 May;8(5):575-87 - PubMed
  33. Crit Care. 2010;14(1):R15 - PubMed
  34. Clin Chem Lab Med. 2013 May;51(5):1059-67 - PubMed

Publication Types