Display options
Share it on

Pharmacol Res Perspect. 2015 Nov 16;3(6):e00189. doi: 10.1002/prp2.189. eCollection 2015 Dec.

Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism.

Pharmacology research & perspectives

Michael D Nguyen, Ashley E Ross, Matthew Ryals, Scott T Lee, B Jill Venton

Affiliations

  1. Department of Chemistry University of Virginia Charlottesville Virginia.

PMID: 27022463 PMCID: PMC4777247 DOI: 10.1002/prp2.189

Abstract

Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3-4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine in the rat caudate-putamen and exogenously applied adenosine in caudate brain slices. The V max for clearance of exogenously applied adenosine in brain slices was 1.4 ± 0.1 μmol/L/sec. In vivo, the equilibrative nucleoside transport 1 (ENT1) inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI) (1 mg/kg, i.p.) significantly increased the duration of adenosine, while the ENT1/2 inhibitor, dipyridamole (10 mg/kg, i.p.), did not affect duration. 5-(3-Bromophenyl)-7-[6-(4-morpholinyl)-3-pyrido[2,3-d]byrimidin-4-amine dihydrochloride (ABT-702), an adenosine kinase inhibitor (5 mg/kg, i.p.), increased the duration of spontaneous adenosine release. The adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) (10 mg/kg, i.p.), also increased the duration in vivo. Similarly, NBTI (10 μmol/L), ABT-702 (100 nmol/L), or EHNA (20 μmol/L) also decreased the clearance rate of exogenously applied adenosine in brain slices. The increases in duration for blocking ENT1, adenosine kinase, or adenosine deaminase individually were similar, about 0.4 sec in vivo; thus, the removal of adenosine on a rapid time scale occurs through three mechanisms that have comparable effects. A cocktail of ABT-702, NBTI, and EHNA significantly increased the duration by 0.7 sec, so the mechanisms are not additive and there may be additional mechanisms clearing adenosine on a rapid time scale. The presence of multiple mechanisms for adenosine clearance on a time scale of seconds demonstrates that adenosine is tightly regulated in the extracellular space.

Keywords: Adenosine deaminase; adenosine kinase; equilibrative nucleoside transporter; voltammetry

References

  1. Brain Res. 2004 Oct 29;1025(1-2):1-9 - PubMed
  2. J Neurosci. 2002 Dec 1;22(23):10477-86 - PubMed
  3. Mol Pain. 2011 Oct 19;7:80 - PubMed
  4. Brain Res. 1995 Jun 26;684(1):103-6 - PubMed
  5. Brain Res. 2000 Apr 17;862(1-2):284-7 - PubMed
  6. J Neurochem. 1999 Aug;73(2):867-73 - PubMed
  7. Eur J Pharmacol. 1999 Apr 9;370(2):125-31 - PubMed
  8. J Neurosci Methods. 2002 Nov 15;121(1):41-52 - PubMed
  9. Neuroscience. 1988 May;25(2):513-23 - PubMed
  10. Gen Pharmacol. 1996 Jun;27(4):613-20 - PubMed
  11. J Neurosci. 2004 Jan 21;24(3):692-701 - PubMed
  12. Curr Neuropharmacol. 2008 Dec;6(4):329-37 - PubMed
  13. Pharmacol Res Perspect. 2015 Nov 16;3(6):e00189 - PubMed
  14. J Neurochem. 2001 Nov;79(3):463-84 - PubMed
  15. J Neurochem. 2015 Jan;132(1):51-60 - PubMed
  16. Biochim Biophys Acta. 1996 Oct 29;1286(3):153-81 - PubMed
  17. Purinergic Signal. 2013 Jun;9(2):167-74 - PubMed
  18. Curr Neuropharmacol. 2009 Sep;7(3):160-79 - PubMed
  19. Neurosci Lett. 1996 Nov 29;219(3):191-4 - PubMed
  20. J Biol Chem. 2002 Jan 4;277(1):395-401 - PubMed
  21. ACS Chem Neurosci. 2013 May 15;4(5):870-8 - PubMed
  22. Neurochem Int. 1995 Apr;26(4):387-95 - PubMed
  23. Prog Neurobiol. 1997 Jul;52(4):283-94 - PubMed
  24. J Biol Chem. 2000 Mar 24;275(12):8375-81 - PubMed
  25. PLoS One. 2014 Jan 29;9(1):e87165 - PubMed
  26. J Neurochem. 2008 May;105(4):1253-63 - PubMed
  27. Circ Res. 2006 Sep 1;99(5):510-9 - PubMed
  28. Analyst. 2009 Jan;134(1):18-24 - PubMed
  29. Biochem J. 1985 Dec 15;232(3):681-8 - PubMed
  30. J Neurochem. 2014 Jul;130(1):50-60 - PubMed
  31. J Cereb Blood Flow Metab. 1993 Mar;13(2):201-7 - PubMed
  32. J Neurochem. 2003 Dec;87(5):1284-95 - PubMed
  33. J Pharmacol Exp Ther. 1997 Dec;283(3):1230-8 - PubMed
  34. Prog Neurobiol. 1990;34(5):387-400 - PubMed
  35. J Biol Chem. 2005 Apr 22;280(16):15880-7 - PubMed
  36. Psychopharmacology (Berl). 1984;83(4):335-9 - PubMed
  37. Curr Top Med Chem. 2011;11(8):948-72 - PubMed
  38. Neuropharmacology. 2012 Feb;62(2):815-24 - PubMed
  39. Neuropharmacology. 1994 Sep;33(9):1049-53 - PubMed
  40. Biochem Pharmacol. 2013 Dec 1;86(11):1531-40 - PubMed
  41. J Pharmacol Exp Ther. 2000 Dec;295(3):1165-74 - PubMed
  42. Biochem Biophys Res Commun. 2009 Oct 9;388(1):46-50 - PubMed
  43. Fed Proc. 1977 Jul;36(8):2154-8 - PubMed
  44. Comput Struct Biotechnol J. 2014 Dec 29;13:47-54 - PubMed
  45. Anal Chem. 2014 Mar 4;86(5):2443-50 - PubMed
  46. J Pharmacol Exp Ther. 1991 Nov;259(2):799-807 - PubMed
  47. Drug Metab Dispos. 2004 Dec;32(12):1455-61 - PubMed
  48. Neuroscience. 2010 Dec 29;171(4):1006-15 - PubMed
  49. Anal Chem. 2007 Jan 15;79(2):744-50 - PubMed
  50. Biochem Pharmacol. 2011 Jan 1;81(1):82-90 - PubMed
  51. Brain Res. 1998 Mar 23;787(2):211-9 - PubMed
  52. Acta Physiol Scand. 1991 May;142(1):97-103 - PubMed
  53. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3294-7 - PubMed

Publication Types

Grant support