Display options
Share it on

J Transl Sci. 2016;2(2):117-124. doi: 10.15761/JTS.1000127. Epub 2016 Mar 05.

Cataloging antineoplastic agents according to their effectiveness against platinum-resistant and platinum-sensitive ovarian carcinoma cell lines.

Journal of translational science

Kimiko Ishiguro, Yong-Lian Zhu, Z Ping Lin, Philip G Penketh, Krishnamurthy Shyam, Rui Zhu, Raymond P Baumann, Alan C Sartorelli, Thomas J Rutherford, Elena S Ratner

Affiliations

  1. Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States.
  2. Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States.

PMID: 27076919 PMCID: PMC4827869 DOI: 10.15761/JTS.1000127

Abstract

Although epithelial ovarian cancers (EOCs) are initially treated with platinum-based chemotherapy, EOCs vary in platinum responsiveness. Cataloging antineoplastic agents according to their effectiveness against platinum-resistant and platinum-sensitive EOC cell lines is valuable for development of therapeutic strategies to avoid platinum inefficacy and to exploit platinum sensitivity. TOV-21G devoid of FANCF expression, OV-90 and SKOV-3 were employed as examples of platinum-sensitive, platinum-intermediate and platinum-resistant cell lines, respectively. Antineoplastic agents examined included mitomycin C, doxorubicin, etoposide, gemcitabine, chlorambucil, paclitaxel, triapine and X-rays. Their effectiveness against cell lines was analyzed by clonogenic assays. Cytotoxic profiles of mitomycin C and carboplatin were similar, with mitomycin C exhibiting greater potency and selectivity against TOV-21G than carboplatin. Cytotoxic profiles of doxorubicin, etoposide and X-rays overlapped with that of carboplatin, while OV-90 overexpressing Rad51 was more resistant to chlorambucil than SKOV-3. The efficacy of paclitaxel and triapine was independent of platinum sensitivity or resistance. Consistent with these cytotoxic profiles, cisplatin/mitomycin C, triapine, and paclitaxel differed in the capacity to induce phosphorylation of H2AX, and produced unique inhibitory patterns of DNA/RNA syntheses in HL-60 human leukemia cells. Paclitaxel and triapine in combination produced additive antitumor effects in M109 murine lung carcinoma. In conclusion, mitomycin C is potentially more effective against Fanconi anemia pathway-deficient EOCs than carboplatin. Doxorubicin and etoposide, because of their overlapping cytotoxic properties with carboplatin, are unlikely to be efficacious against platinum-refractory EOCs. Paclitaxel and triapine are effective regardless of platinum sensitivity status, and promising in combination for both platinum-sensitive and platinum-refractory EOCs.

Keywords: Fanconi anemia pathway; carboplatin; mitomycin C; paclitaxel; platinum responsiveness; triapine

References

  1. Nat Genet. 2011 Oct 02;43(11):1104-7 - PubMed
  2. Biochem Pharmacol. 2010 Nov 1;80(9):1317-25 - PubMed
  3. Biochem Pharmacol. 2000 Apr 15;59(8):983-91 - PubMed
  4. Cancer Treat Rep. 1981 Mar-Apr;65(3-4):299-312 - PubMed
  5. Cancer Biol Ther. 2008 May;7(5):699-708 - PubMed
  6. Clin Cancer Res. 2015 Feb 1;21(3):652-7 - PubMed
  7. Nucleic Acids Res. 2015 Mar 11;43(5):2489-98 - PubMed
  8. Nat Med. 2003 May;9(5):568-74 - PubMed
  9. Chem Res Toxicol. 2015 Sep 21;28(9):1850-60 - PubMed
  10. Dalton Trans. 2011 May 14;40(18):4821-5 - PubMed
  11. J Med Chem. 1992 Oct 2;35(20):3672-7 - PubMed
  12. Chem Biol. 1995 Sep;2(9):575-9 - PubMed
  13. Biochem Pharmacol. 2014 Oct 1;91(3):312-22 - PubMed
  14. Genes Dev. 2012 Jul 1;26(13):1393-408 - PubMed
  15. Cancer Res. 1994 Dec 1;54(23):6069-72 - PubMed
  16. Cancer Res. 2015 Feb 15;75(4):628-34 - PubMed
  17. Nat Commun. 2013;4:1423 - PubMed
  18. Cancer Res. 2008 Jul 1;68(13):5023-30 - PubMed
  19. Nat Rev Mol Cell Biol. 2014 Jul;15(7):465-81 - PubMed
  20. Nature. 2011 Jun 29;474(7353):609-15 - PubMed
  21. Chem Rev. 1999 Sep 8;99(9):2467-98 - PubMed
  22. Cell. 2015 Jan 15;160(1-2):354-354.e1 - PubMed
  23. Mol Cancer Ther. 2014 Oct;13(10):2412-21 - PubMed
  24. Chem Biol. 2000 Jan;7(1):39-50 - PubMed
  25. Expert Opin Emerg Drugs. 2005 May;10(2):413-24 - PubMed
  26. Clin Cancer Res. 2014 Feb 1;20(3):764-75 - PubMed
  27. Cancer Res. 2002 Sep 1;62(17):4899-902 - PubMed
  28. Cancer Treat Rev. 2007 Dec;33(8):688-703 - PubMed
  29. Nat Rev Cancer. 2011 Jun 24;11(7):467-80 - PubMed
  30. JAMA. 2012 Jan 25;307(4):382-90 - PubMed
  31. Cancer Res. 1985 Sep;45(9):4178-84 - PubMed
  32. Nat Rev Cancer. 2011 Sep 23;11(10):719-25 - PubMed
  33. Biochem Pharmacol. 1996 Dec 24;52(12):1855-65 - PubMed
  34. Chem Rev. 2007 May;107(5):1387-407 - PubMed
  35. Nat Commun. 2013;4:2126 - PubMed
  36. Mol Cancer Ther. 2013 Jun;12 (6):1002-15 - PubMed
  37. In Vitro Cell Dev Biol Anim. 2000 Jun;36(6):357-61 - PubMed
  38. Semin Cell Dev Biol. 2011 Oct;22(8):898-905 - PubMed
  39. Cancer Res. 2005 Dec 15;65(24):11704-11 - PubMed
  40. Biochimie. 2003 Nov;85(11):1101-11 - PubMed
  41. Cancer Res. 1986 Apr;46(4 Pt 2):1972-9 - PubMed

Publication Types

Grant support