Display options
Share it on

Biomol Detect Quantif. 2015 Jun 06;4:22-32. doi: 10.1016/j.bdq.2015.04.003. eCollection 2015 Jun.

Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery.

Biomolecular detection and quantification

Christopher J Hayes, Tara M Dalton

Affiliations

  1. Stokes Institute, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland; Department of Life Sciences, University of Limerick, Limerick, Ireland.
  2. Stokes Institute, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland.

PMID: 27077035 PMCID: PMC4822205 DOI: 10.1016/j.bdq.2015.04.003

Abstract

PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits.

Keywords: Biomarkers; Droplet; Gene expression; Instrumentation; Microfluidic; Real-time PCR

References

  1. Biosci Biotechnol Biochem. 1994 Feb;58(2):349-52 - PubMed
  2. Phys Rev Lett. 2001 Apr 30;86(18):4163-6 - PubMed
  3. Anal Chem. 2003 Sep 15;75(18):4718-23 - PubMed
  4. Nat Methods. 2011 Sep 04;8(10):841-3 - PubMed
  5. Biosens Bioelectron. 2005 Feb 15;20(8):1482-90 - PubMed
  6. Electrophoresis. 2002 May;23(10):1531-6 - PubMed
  7. Methods. 2005 Nov;37(3):229-37 - PubMed
  8. Anal Chem. 2006 Feb 1;78(3):956-8 - PubMed
  9. Genome Res. 2008 Sep;18(9):1509-17 - PubMed
  10. Mol Pathol. 2002 Feb;55(1):34-9 - PubMed
  11. Methods. 2013 Jan;59(1):S20-3 - PubMed
  12. Anal Chem. 2013 Aug 6;85(15):7182-90 - PubMed
  13. Anal Chem. 2006 Nov 15;78(22):7722-8 - PubMed
  14. Expert Rev Mol Diagn. 2011 May;11(4):393-407 - PubMed
  15. Chembiochem. 2007 Feb 12;8(3):263-72 - PubMed
  16. J Biotechnol. 2003 Apr 24;102(2):117-24 - PubMed
  17. BMC Res Notes. 2011 Sep 06;4:324 - PubMed
  18. Anal Chem. 2003 Jan 1;75(1):1-7 - PubMed
  19. PLoS One. 2008 Feb 27;3(2):e1662 - PubMed
  20. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9236-41 - PubMed
  21. Anal Chem. 2008 Dec 1;80(23):8975-81 - PubMed
  22. J Immunol Methods. 1983 Dec 16;65(1-2):217-23 - PubMed
  23. Nature. 2008 Apr 17;452(7189):872-6 - PubMed
  24. Nucleic Acids Res. 2006;34(18):e123 - PubMed
  25. Annu Rev Biomed Eng. 2011 Aug 15;13:321-43 - PubMed
  26. Anal Chem. 2005 Jun 1;77(11):3700-4 - PubMed
  27. Methods. 2013 Jan;59(1):89-100 - PubMed
  28. Lab Chip. 2013 Jan 21;13(2):267-73 - PubMed
  29. Anal Chem. 2001 Mar 1;73(5):1043-7 - PubMed
  30. Clin Chem. 2009 Apr;55(4):611-22 - PubMed
  31. Lab Chip. 2009 May 7;9(9):1236-42 - PubMed
  32. Anal Chem. 2003 Nov 1;75(21):6029-33 - PubMed
  33. Biotechniques. 1992 Sep;13(3):444-9 - PubMed
  34. Genes Immun. 2005 Jun;6(4):279-84 - PubMed
  35. Int J Mol Sci. 2011;12(6):3576-93 - PubMed
  36. Nat Biotechnol. 2007 Jan;25(1):27-8; author reply 28-9 - PubMed
  37. Lab Chip. 2013 Apr 7;13(7):1225-42 - PubMed
  38. Methods Mol Biol. 2013;949:207-30 - PubMed
  39. Biotechniques. 2009 May;46(6):ii-viii - PubMed
  40. Methods Enzymol. 1987;155:335-50 - PubMed
  41. Expert Rev Mol Diagn. 2011 Jun;11(5):505-19 - PubMed
  42. Expert Rev Mol Diagn. 2005 Jul;5(4):493-8 - PubMed
  43. Methods. 2010 Apr;50(4):277-81 - PubMed
  44. Chem Commun (Camb). 2007 May 14;(18):1773-88 - PubMed
  45. Int J Mol Sci. 2013 May 30;14(6):11484-95 - PubMed
  46. Chem Rev. 2010 Aug 11;110(8):4910-47 - PubMed
  47. Nat Biotechnol. 2006 Sep;24(9):1039 - PubMed
  48. Anal Bioanal Chem. 2006 Nov;386(5):1327-33 - PubMed
  49. Biotechniques. 1991 Jan;10(1):76-83 - PubMed

Publication Types