Display options
Share it on

Phys Chem Chem Phys. 2016 May 21;18(19):13375-84. doi: 10.1039/c6cp00493h. Epub 2016 Apr 28.

Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

Physical chemistry chemical physics : PCCP

Alice Cognigni, Peter Gaertner, Ronald Zirbs, Herwig Peterlik, Katharina Prochazka, Christian Schröder, Katharina Bica

Affiliations

  1. Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria. [email protected].

PMID: 27121134 PMCID: PMC5317217 DOI: 10.1039/c6cp00493h

Abstract

A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions.

References

  1. J Colloid Interface Sci. 2009 Aug 1;336(1):111-6 - PubMed
  2. Phys Chem Chem Phys. 2011 Sep 14;13(34):15523-9 - PubMed
  3. Phys Chem Chem Phys. 2009 Jun 7;11(21):4260-8 - PubMed
  4. Angew Chem Int Ed Engl. 2005 Nov 11;44(44):7174-99 - PubMed
  5. J Colloid Interface Sci. 2007 Sep 1;313(1):296-304 - PubMed
  6. Colloids Surf B Biointerfaces. 2014 Nov 1;123:318-25 - PubMed
  7. Langmuir. 2004 Aug 3;20(16):6586-93 - PubMed
  8. Talanta. 2004 Jul 8;63(4):979-86 - PubMed
  9. J Colloid Interface Sci. 2007 Mar 15;307(2):455-68 - PubMed
  10. Langmuir. 2004 Mar 16;20(6):2191-8 - PubMed
  11. Langmuir. 2015 Feb 3;31(4):1283-95 - PubMed
  12. J Colloid Interface Sci. 2007 Oct 1;314(1):236-41 - PubMed
  13. Langmuir. 2006 Oct 10;22(21):9009-17 - PubMed
  14. Chem Soc Rev. 2012 Jan 21;41(2):829-68 - PubMed
  15. J Colloid Interface Sci. 2011 Oct 15;362(2):415-22 - PubMed
  16. J Phys Chem B. 2013 May 9;117(18):5653-8 - PubMed
  17. J Colloid Interface Sci. 2011 Mar 1;355(1):164-71 - PubMed
  18. Green Chem. 2014 Aug 1;16(8):3660-3679 - PubMed
  19. J Colloid Interface Sci. 2009 Dec 1;340(1):104-11 - PubMed
  20. Langmuir. 2012 Jan 10;28(1):833-40 - PubMed
  21. Chem Commun (Camb). 2012 May 21;48(41):5013-5 - PubMed
  22. Langmuir. 2013 Feb 26;29(8):2536-45 - PubMed
  23. Chem Commun (Camb). 2012 Jul 21;48(57):7119-30 - PubMed
  24. Phys Chem Chem Phys. 2009 Oct 21;11(39):8939-48 - PubMed
  25. J Phys Chem B. 2008 Jul 24;112(29):8645-50 - PubMed
  26. Phys Chem Chem Phys. 2014 Apr 7;16(13):5893-906 - PubMed
  27. Org Biomol Chem. 2006 Dec 7;4(23):4352-63 - PubMed
  28. Org Lett. 2002 Oct 17;4(21):3671-3 - PubMed

Publication Types