Display options
Share it on

Sci Rep. 2016 Apr 28;6:25152. doi: 10.1038/srep25152.

Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications.

Scientific reports

Jonathan M Ward, Yong Yang, Síle Nic Chormaic

Affiliations

  1. Light-Matter Interactions Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
  2. National Engineering Laboratory for Fiber Optics Sensing Technology, Wuhan University of Technology, Wuhan, 430070, China.

PMID: 27121151 PMCID: PMC4848646 DOI: 10.1038/srep25152

Abstract

We describe a novel method for making microbottle-shaped lasers by using a CO2 laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO2 laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated.

References

  1. Opt Express. 2011 Sep 12;19(19):17966-72 - PubMed
  2. Opt Lett. 2010 Jun 1;35(11):1866-8 - PubMed
  3. Opt Express. 2010 Jul 5;18(14):14345-52 - PubMed
  4. Opt Lett. 2011 Dec 1;36(23):4536-8 - PubMed
  5. Appl Opt. 2007 Jan 20;46(3):389-96 - PubMed
  6. Opt Lett. 2010 Apr 1;35(7):898-900 - PubMed
  7. Opt Lett. 2016 Feb 1;41(3):551-4 - PubMed
  8. Phys Rev Lett. 2009 Jul 31;103(5):053901 - PubMed
  9. Appl Opt. 2014 Nov 10;53(32):7819-24 - PubMed
  10. Opt Express. 2013 Jan 14;21(1):675-80 - PubMed
  11. Opt Lett. 2003 Apr 15;28(8):592-4 - PubMed
  12. Opt Lett. 2013 May 1;38(9):1458-60 - PubMed
  13. Opt Express. 2011 May 23;19(11):10124-30 - PubMed
  14. Opt Express. 2015 Aug 24;23(17):22740-5 - PubMed
  15. Opt Express. 2009 Sep 14;17(19):16465-79 - PubMed
  16. Opt Lett. 2012 Nov 15;37(22):4762-4 - PubMed
  17. Opt Express. 2015 Apr 6;23(7):9483-93 - PubMed
  18. Opt Lett. 2001 Feb 1;26(3):166-8 - PubMed
  19. Rev Sci Instrum. 2010 Jul;81(7):073106 - PubMed
  20. Opt Express. 2005 Dec 26;13(26):10754-9 - PubMed
  21. Opt Express. 2014 Mar 24;22(6):6881-98 - PubMed

Publication Types