Display options
Share it on

Sci Rep. 2016 Apr 19;6:24603. doi: 10.1038/srep24603.

Femtomagnetism in graphene induced by core level excitation of organic adsorbates.

Scientific reports

Abhilash Ravikumar, Anu Baby, He Lin, Gian Paolo Brivio, Guido Fratesi

Affiliations

  1. Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 55 - 20125 Milano, Italia.
  2. Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16 - 20133 Milano, Italia.

PMID: 27089847 PMCID: PMC4835731 DOI: 10.1038/srep24603

Abstract

We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numerical simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent mid gap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore.

References

  1. Nature. 2005 Nov 10;438(7065):201-4 - PubMed
  2. ACS Nano. 2010 May 25;4(5):2865-73 - PubMed
  3. Science. 2007 Mar 9;315(5817):1379 - PubMed
  4. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  5. Science. 2004 Oct 22;306(5696):666-9 - PubMed
  6. Nature. 2007 Aug 2;448(7153):571-4 - PubMed
  7. Nature. 2005 Nov 10;438(7065):197-200 - PubMed
  8. J Chem Phys. 2009 Feb 7;130(5):054704 - PubMed
  9. Nature. 2009 Nov 12;462(7270):196-9 - PubMed
  10. Nano Lett. 2008 Jan;8(1):323-7 - PubMed
  11. Nano Lett. 2009 Nov;9(11):3867-70 - PubMed
  12. J Phys Condens Matter. 2009 Sep 30;21(39):395502 - PubMed
  13. J Am Chem Soc. 2009 Dec 2;131(47):17099-101 - PubMed
  14. Nature. 2010 May 27;465(7297):458-61 - PubMed
  15. Phys Rev Lett. 2015 Nov 13;115(20):206803 - PubMed
  16. Nanoscale. 2015 Jun 14;7(22):10030-8 - PubMed
  17. Phys Chem Chem Phys. 2015 Jan 21;17(3):2210-5 - PubMed
  18. J Comput Chem. 2006 Nov 30;27(15):1787-99 - PubMed
  19. Chem Soc Rev. 2008 Oct;37(10):2212-23 - PubMed
  20. Phys Rev A. 1991 Jun 1;43(11):6053-6056 - PubMed
  21. Science. 2009 Jun 19;324(5934):1530-4 - PubMed
  22. ACS Nano. 2010 Feb 23;4(2):637-42 - PubMed
  23. Phys Rev B Condens Matter. 1996 Dec 15;54(23):16533-16539 - PubMed
  24. Nature. 2007 Mar 1;446(7131):60-3 - PubMed
  25. J Chem Phys. 2014 Feb 7;140(5):054708 - PubMed
  26. Nature. 2004 Aug 19;430(7002):870-3 - PubMed
  27. Phys Rev B Condens Matter. 1996 Dec 15;54(24):17954-17961 - PubMed
  28. ACS Nano. 2010 Apr 27;4(4):1949-54 - PubMed
  29. Sci Rep. 2015 Aug 26;5:13382 - PubMed
  30. ACS Nano. 2010 Jan 26;4(1):43-8 - PubMed
  31. Phys Rev Lett. 2012 Sep 21;109(12):126401 - PubMed
  32. Phys Rev Lett. 1996 May 27;76(22):4250-4253 - PubMed
  33. Phys Rev Lett. 2015 Aug 28;115(9):096601 - PubMed
  34. Phys Rev Lett. 1989 Mar 6;62(10):1201-1204 - PubMed
  35. Sci Rep. 2012;2:624 - PubMed
  36. Science. 2009 Jan 30;323(5914):610-3 - PubMed
  37. Nat Mater. 2007 Mar;6(3):183-91 - PubMed
  38. Nano Lett. 2015 Dec 9;15(12):8316-21 - PubMed
  39. J Phys Condens Matter. 2014 Nov 5;26(44):443001 - PubMed
  40. ACS Nano. 2008 Mar;2(3):463-70 - PubMed
  41. Nano Lett. 2010 Oct 13;10(10):4061-6 - PubMed

Publication Types