Display options
Share it on

Cancer Inform. 2016 Mar 29;15:29-33. doi: 10.4137/CIN.S33014. eCollection 2016.

Integrative Analysis of mRNA, microRNA, and Protein Correlates of Relative Cerebral Blood Volume Values in GBM Reveals the Role for Modulators of Angiogenesis and Tumor Proliferation.

Cancer informatics

Arvind Rao, Ganiraju Manyam, Ganesh Rao, Rajan Jain

Affiliations

  1. Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  2. Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  3. Department of Radiology, NY University School of Medicine, New York, NY, USA.

PMID: 27053917 PMCID: PMC4814129 DOI: 10.4137/CIN.S33014

Abstract

Dynamic susceptibility contrast-enhanced magnetic resonance imaging is routinely used to provide hemodynamic assessment of brain tumors as a diagnostic as well as a prognostic tool. Recently, it was shown that the relative cerebral blood volume (rCBV), obtained from the contrast-enhancing as well as -nonenhancing portion of glioblastoma (GBM), is strongly associated with overall survival. In this study, we aim to characterize the genomic correlates (microRNA, messenger RNA, and protein) of this vascular parameter. This study aims to provide a comprehensive radiogenomic and radioproteomic characterization of the hemodynamic phenotype of GBM using publicly available imaging and genomic data from the Cancer Genome Atlas GBM cohort. Based on this analysis, we identified pathways associated with angiogenesis and tumor proliferation underlying this hemodynamic parameter in GBM.

Keywords: angiogenesis; data integration; imaging-genomics; pathway analysis; perfusion imaging; rCBV

References

  1. Clin Cancer Res. 2007 May 15;13(10):2825-30 - PubMed
  2. Mol Cancer. 2014 Feb 21;13:33 - PubMed
  3. J Exp Med. 2004 Jun 7;199(11):1513-22 - PubMed
  4. Radiology. 2013 May;267(2):560-9 - PubMed
  5. Curr Neurol Neurosci Rep. 2011 Jun;11(3):336-44 - PubMed
  6. PLoS One. 2011;6(10):e25451 - PubMed
  7. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5213-8 - PubMed
  8. Nat Med. 2006 Feb;12(2):171-2 - PubMed
  9. Oncogene. 2013 Sep 26;32(39):4694-701 - PubMed
  10. Br J Pharmacol. 2013 Feb;168(3):591-606 - PubMed
  11. J Neuroinflammation. 2010 Dec 22;7:95 - PubMed
  12. Nat Struct Mol Biol. 2014 Nov;21(11):962-8 - PubMed
  13. Radiology. 2013 Jan;266(1):177-84 - PubMed
  14. PLoS One. 2013;8(1):e53131 - PubMed
  15. Cancers (Basel). 2014 Mar 25;6(2):625-45 - PubMed
  16. Cell Cycle. 2004 Dec;3(12):1520-3 - PubMed
  17. Genes Chromosomes Cancer. 2010 Nov;49(11):981-90 - PubMed
  18. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  19. Semin Oncol. 2001 Oct;28(5 Suppl 16):27-32 - PubMed
  20. Comput Med Imaging Graph. 2008 Sep;32(6):513-20 - PubMed
  21. AJNR Am J Neuroradiol. 2012 Jun;33(6):1059-64 - PubMed
  22. PLoS One. 2013 Oct 23;8(10):e77957 - PubMed
  23. Genes Dev. 2009 Jun 1;23 (11):1327-37 - PubMed
  24. PLoS One. 2013 Aug 19;8(8):e71704 - PubMed
  25. J Pharmacol Exp Ther. 2005 Apr;313(1):325-32 - PubMed
  26. Front Physiol. 2014 Mar 28;5:114 - PubMed
  27. J Neurol Sci. 2004 Feb 15;217(2):125-30 - PubMed
  28. Blood. 2003 Apr 1;101(7):2620-7 - PubMed
  29. Circ Res. 2013 Nov 8;113(11):1231-41 - PubMed
  30. Radiology. 2013 Apr;267(1):212-20 - PubMed
  31. Radiology. 2014 Aug;272(2):484-93 - PubMed
  32. Neoplasia. 2010 Sep;12(9):675-84 - PubMed
  33. Curr Opin Oncol. 2013 May;25(3):313-24 - PubMed
  34. AJNR Am J Neuroradiol. 2012 Jun;33(6):1065-71 - PubMed
  35. AJNR Am J Neuroradiol. 2012 Aug;33(7):1343-8 - PubMed
  36. Cancer Res. 2007 Sep 15;67(18):8725-35 - PubMed
  37. AJNR Am J Neuroradiol. 2011 Feb;32(2):388-94 - PubMed
  38. AJNR Am J Neuroradiol. 2016 Jan;37(1):37-43 - PubMed
  39. Nat Biotechnol. 2007 Jun;25(6):675-80 - PubMed
  40. J Immunol. 2009 Oct 1;183(7):4705-14 - PubMed

Publication Types

Grant support