Display options
Share it on

Int J Fertil Steril. 2016 Apr-Jun;10(1):53-61. doi: 10.22074/ijfs.2016.4769. Epub 2016 Apr 05.

Effects of Crocin Supplementation during In Vitro Maturation of Mouse Oocytes on Glutathione Synthesis and Cytoplasmic Maturation.

International journal of fertility & sterility

Elham Mokhber Maleki, Hussein Eimani, Mohammad Reza Bigdeli, Afsane Golkar Narenji, Reyhane Abedi

Affiliations

  1. Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Embryology, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran.
  2. Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomy, Faculty of Medicine, Baqiatallah (a.s.) University of Medical Sciences, Tehran, Iran.
  3. Department of Embryology, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran.

PMID: 27123201 PMCID: PMC4845530 DOI: 10.22074/ijfs.2016.4769

Abstract

BACKGROUND: Crocin is an active ingredient of saffron (Crocus sativus L.) and its antioxidant properties have been previously investigated. This carotenoid scavenges free radicals and stimulates glutathione (GSH) synthesis; consequently, it may protect cells against oxidative stress. The aim of this research is to protect oocytes from oxidative stress by the addition of a natural source antioxidant.

MATERIALS AND METHODS: In the present in vitro experimental study, we collected cumulus oocyte complexes (COCs) from mouse ovaries of euthanized, 6-8 week-old female Naval Medical Research Institute (NMRI) mice. Oocytes were subjected to in vitro maturation (IVM) in the presence of either crocin (5 or 10 μg/ml), 5 mM buthionine-[S-R]- sulfoximine (BSO), or the combination of crocin plus BSO. Oocytes that matured in vitro in a medium without crocin or BSO supplements were considered as controls. Following 16-18 hours of IVM, matured oocytes (n=631) were fertilized by capacitated sperm from NMRI male mice, and cultured in vitro for up to 96 hours to assess preimplantation embryonic development. The levels of GSH in metaphase II (MII) oocytes after IVM (n=240) were also assessed by the 5, 5-dithio-bis (2-nitrobenzoic acid) (DTNB)-GSH reductase recycling assay.

RESULTS: Supplementation of IVM media with 10 µg/ml crocin significantly (P<0.05) increased nuclear maturation, preimplantation development and GSH concentrations compared with the control group. Maturation of oocytes in IVM medium supplemented with BSO alone or the combination of 5 µg/ml crocin and BSO drastically decreased GSH concentrations and subsequently resulted in low rates of maturation, fertilization and blastocyst development. However, the combination of 10 µg/ml crocin with 5 mM BSO increased the level of nuclear maturation which was comparable to the control group.

CONCLUSION: Supplementation of IVM media with crocin can improve nuclear maturation rates and subsequent developmental potential of mouse oocytes. This may occur by its beneficial effect in increasing GSH concentrations in MII oocytes.

Keywords: Crocin; Glutathione; In Vitro Maturation; Mouse; Oocyte

References

  1. Theriogenology. 2000 Feb;53(3):761-71 - PubMed
  2. J Agric Food Chem. 2000 May;48(5):1455-61 - PubMed
  3. Hum Reprod Update. 2001 Mar-Apr;7(2):175-89 - PubMed
  4. Theriogenology. 2001 Apr 1;55(6):1241-54 - PubMed
  5. IUBMB Life. 2001 Jan;51(1):57-64 - PubMed
  6. Life Sci. 2001 Nov 2;69(24):2887-98 - PubMed
  7. J Reprod Fertil. 1965 Feb;9:99-102 - PubMed
  8. Hum Reprod. 1992 Oct;7(9):1281-90 - PubMed
  9. Neurosci Lett. 2004 May 13;362(1):61-4 - PubMed
  10. Mol Reprod Dev. 2004 Nov;69(3):338-46 - PubMed
  11. Phytother Res. 2005 Nov;19(11):997-1000 - PubMed
  12. Anim Reprod Sci. 2007 Apr;98(3-4):282-92 - PubMed
  13. Fertil Steril. 2006 Sep;86(3):503-12 - PubMed
  14. Biochim Biophys Acta. 2007 Apr;1770(4):578-84 - PubMed
  15. J Vet Sci. 2007 Mar;8(1):81-7 - PubMed
  16. Birth Defects Res C Embryo Today. 2007 Sep;81(3):155-62 - PubMed
  17. J Reprod Dev. 2009 Dec;55(6):594-8 - PubMed
  18. Fitoterapia. 2010 Jun;81(4):269-73 - PubMed
  19. Cell Mol Neurobiol. 2012 Mar;32(2):227-35 - PubMed
  20. J Immunol. 2011 Nov 1;187(9):4788-99 - PubMed
  21. Ecotoxicol Environ Saf. 2012 Sep;83:47-54 - PubMed
  22. Phytomedicine. 2013 Apr 15;20(6):537-42 - PubMed
  23. Cell J. 2012 Winter;13(4):259-64 - PubMed
  24. Iran J Basic Med Sci. 2013 Jan;16(1):83-90 - PubMed
  25. Iran J Basic Med Sci. 2013 Jan;16(1):101-7 - PubMed
  26. Iran J Basic Med Sci. 2013 Sep;16(9):1022-6 - PubMed
  27. Food Chem Toxicol. 2014 Feb;64:65-80 - PubMed
  28. Int J Fertil Steril. 2013 Jan;6(4):278-85 - PubMed
  29. Iran J Basic Med Sci. 2014 Jan;17(1):9-13 - PubMed
  30. Taiwan J Obstet Gynecol. 2014 Mar;53(1):21-5 - PubMed
  31. Hum Exp Toxicol. 2015 Feb;34(2):127-34 - PubMed
  32. Adv Pharm Bull. 2014 Dec;4(Suppl 2):493-9 - PubMed
  33. Reprod Med Biol. 2010 Jun 24;9(4):211-215 - PubMed
  34. Int J Radiat Biol Relat Stud Phys Chem Med. 1982 May;41(5):493-501 - PubMed
  35. Biol Reprod. 1994 Oct;51(4):633-9 - PubMed
  36. Biofactors. 1993 May;4(2):83-6 - PubMed
  37. Biol Reprod. 1993 Jul;49(1):89-94 - PubMed
  38. Cancer Biother. 1995 Winter;10(4):257-64 - PubMed
  39. Biol Reprod. 1997 Dec;57(6):1420-5 - PubMed

Publication Types