Display options
Share it on

J Fluoresc. 2016 Jul;26(4):1391-400. doi: 10.1007/s10895-016-1830-3. Epub 2016 May 25.

Solvent Effects on the Electronic Absorption and Fluorescence Spectra of HNP: Estimation of Ground and Excited State Dipole Moments.

Journal of fluorescence

Vani R Desai, Shirajahammad M Hunagund, Mahantesha Basanagouda, Jagadish S Kadadevarmath, Ashok H Sidarai

Affiliations

  1. Department of Studies in Physics, Karnatak University, Dharwad, Karnataka, 580003, India.
  2. P. G. Department of Studies in Chemistry, K. L. E. Society's P. C. Jabin Science College, Hubli, Karnataka, 580031, India.
  3. Department of Studies in Physics, Karnatak University, Dharwad, Karnataka, 580003, India. [email protected].

PMID: 27220623 DOI: 10.1007/s10895-016-1830-3

Abstract

We report the effect of solvents on absorption and fluorescence spectra of biologically active 3(2H)-pyridazinone namely 5-(2-hydroxy-naphthalen-1-yl)-2-phenyl-2H-pyridazin-3-one (HNP) in different solvents at room temperature. The ground and the excited state dipole moments of HNP molecule was estimated from Lippert's, Bakshiev's and Kawski-Chamma-Viallet's equations using the solvatochromic shift method. The ground state dipole moment (μ g ) was also estimated by Guggenheim and Higasi method using the dielectric constant and refractive index of solute at different concentrations, the μ g value obtained from these two methods are comparable to the μ g value obtained by the solvatochromic shift method. The excited state dipole moment (μ e ) is greater than the ground state dipole moment (μ g ), which indicates that the excited state is more polar than the ground state. Further, we have evaluated the change in dipole moment (Δμ) from the solvatochromic shift method and on the basis of molecular-microscopic solvent polarity parameter[Formula: see text], later on the values were compared.

Keywords: 3(2H)-pyridazinone; Guggenheim method; Higasi method; Molecular-microscopic solvent polarity parameter; Solvatochromic shift method

References

  1. Spectrochim Acta A Mol Biomol Spectrosc. 2013 May;108:288-94 - PubMed
  2. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt B:1086-98 - PubMed
  3. Spectrochim Acta A Mol Biomol Spectrosc. 2008 Mar;69(3):991-7 - PubMed
  4. Curr Med Chem. 2012;19(18):2984-91 - PubMed
  5. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 25;137:527-34 - PubMed
  6. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Dec 10;133:741-51 - PubMed
  7. Spectrochim Acta A Mol Biomol Spectrosc. 2009 Apr;72(3):490-5 - PubMed
  8. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt C:1475-83 - PubMed
  9. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5;138:85-91 - PubMed
  10. J Fluoresc. 2011 May;21(3):1213-22 - PubMed
  11. Spectrochim Acta A Mol Biomol Spectrosc. 2011 Dec 15;84(1):137-43 - PubMed
  12. Spectrochim Acta A Mol Biomol Spectrosc. 2001 Feb;57(2):291-8 - PubMed

Publication Types