Display options
Share it on

Proc Natl Acad Sci U S A. 2016 May 24;113(21):5841-6. doi: 10.1073/pnas.1520969113. Epub 2016 May 06.

Information capacity of specific interactions.

Proceedings of the National Academy of Sciences of the United States of America

Miriam H Huntley, Arvind Murugan, Michael P Brenner

Affiliations

  1. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138;
  2. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138; Physics and the James Franck Institute, University of Chicago, Chicago, IL 60637;
  3. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138; Department of Physics, Harvard University, Cambridge, MA 02138 [email protected].

PMID: 27155013 PMCID: PMC4889362 DOI: 10.1073/pnas.1520969113

Abstract

Specific interactions are a hallmark feature of self-assembly and signal-processing systems in both synthetic and biological settings. Specificity between components may arise from a wide variety of physical and chemical mechanisms in diverse contexts, from DNA hybridization to shape-sensitive depletion interactions. Despite this diversity, all systems that rely on interaction specificity operate under the constraint that increasing the number of distinct components inevitably increases off-target binding. Here we introduce "capacity," the maximal information encodable using specific interactions, to compare specificity across diverse experimental systems and to compute how specificity changes with physical parameters. Using this framework, we find that "shape" coding of interactions has higher capacity than chemical ("color") coding because the strength of off-target binding is strongly sublinear in binding-site size for shapes while being linear for colors. We also find that different specificity mechanisms, such as shape and color, can be combined in a synergistic manner, giving a capacity greater than the sum of the parts.

Keywords: colloid; crosstalk; mutual information; self-assembly; specificity

References

  1. Nature. 2008 Jan 31;451(7178):549-52 - PubMed
  2. Science. 2000 Aug 18;289(5482):1170-2 - PubMed
  3. Trends Cell Biol. 2012 Dec;22(12):653-61 - PubMed
  4. J Theor Biol. 1997 Dec 21;189(4):427-41 - PubMed
  5. J Chem Phys. 2015 Jan 14;142(2):021101 - PubMed
  6. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15918-23 - PubMed
  7. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):603-8 - PubMed
  8. Science. 2015 Feb 6;347(6222):673-7 - PubMed
  9. Science. 1994 Nov 11;266(5187):1021-4 - PubMed
  10. Cell. 2015 Dec 17;163(7):1770-82 - PubMed
  11. BMC Genomics. 2006 Sep 19;7:239 - PubMed
  12. IET Syst Biol. 2008 Sep;2(5):304-12 - PubMed
  13. Nat Commun. 2015 Feb 11;6:6203 - PubMed
  14. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12 ):4225-9 - PubMed
  15. Nature. 2015 Dec 17;528(7582):392-5 - PubMed
  16. Science. 2012 Jun 1;336(6085):1171-4 - PubMed
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 1):060402 - PubMed
  18. Immunol Lett. 1989 Aug;22(2):91-9 - PubMed
  19. Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22430-5 - PubMed
  20. Phys Rev Lett. 2007 Dec 31;99(26):268301 - PubMed
  21. Phys Rev Lett. 2005 Feb 11;94(5):058302 - PubMed
  22. Phys Rev Lett. 2008 Oct 3;101(14):148301 - PubMed
  23. Curr Opin Microbiol. 2013 Apr;16(2):156-62 - PubMed
  24. Langmuir. 2010 Aug 3;26(15):12534-9 - PubMed
  25. Langmuir. 2010 Jun 1;26(11):8636-40 - PubMed
  26. Nature. 2010 Mar 25;464(7288):575-8 - PubMed
  27. J Theor Biol. 1979 Dec 21;81(4):645-70 - PubMed
  28. Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18731-6 - PubMed
  29. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5286-90 - PubMed
  30. Nature. 1996 Aug 15;382(6592):607-9 - PubMed
  31. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2684-7 - PubMed
  32. Soft Matter. 2014 Sep 14;10(34):6404-16 - PubMed
  33. Science. 2012 Nov 30;338(6111):1177-83 - PubMed
  34. Nature. 1996 Aug 15;382(6592):609-11 - PubMed
  35. Nat Mater. 2011 Sep 25;10(11):872-6 - PubMed

Publication Types