Display options
Share it on

J Am Chem Soc. 2016 Jun 01;138(21):6707-10. doi: 10.1021/jacs.6b03187. Epub 2016 May 18.

Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer.

Journal of the American Chemical Society

Leanne G Bloor, Renata Solarska, Krzysztof Bienkowski, Pawel J Kulesza, Jan Augustynski, Mark D Symes, Leroy Cronin

Affiliations

  1. WestCHEM School of Chemistry, University of Glasgow , University Avenue, Glasgow G12 8QQ, United Kingdom.
  2. Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland.
  3. Center of New Technologies, University of Warsaw , S. Banacha 2c, 02-097 Warsaw, Poland.

PMID: 27159121 PMCID: PMC5033397 DOI: 10.1021/jacs.6b03187

Abstract

Solar-to-hydrogen photoelectrochemical cells (PECs) have been proposed as a means of converting sunlight into H2 fuel. However, in traditional PECs, the oxygen evolution reaction and the hydrogen evolution reaction are coupled, and so the rate of both of these is limited by the photocurrents that can be generated from the solar flux. This in turn leads to slow rates of gas evolution that favor crossover of H2 into the O2 stream and vice versa, even through ostensibly impermeable membranes such as Nafion. Herein, we show that the use of the electron-coupled-proton buffer (ECPB) H3PMo12O40 allows solar-driven O2 evolution from water to proceed at rates of over 1 mA cm(-2) on WO3 photoanodes without the need for any additional electrochemical bias. No H2 is produced in the PEC, and instead H3PMo12O40 is reduced to H5PMo12O40. If the reduced ECPB is subjected to a separate electrochemical reoxidation, then H2 is produced with full overall Faradaic efficiency.

References

  1. Nat Chem. 2013 May;5(5):403-9 - PubMed
  2. Chem Rev. 2010 Nov 10;110(11):6474-502 - PubMed
  3. Nat Commun. 2013;4:2195 - PubMed
  4. Nature. 2013 Jan 3;493(7430):79-83 - PubMed
  5. ChemSusChem. 2014 Jan;7(1):73-6 - PubMed
  6. Angew Chem Int Ed Engl. 2013 Sep 27;52(40):10426-37 - PubMed
  7. ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7621-5 - PubMed
  8. ChemSusChem. 2015 Feb;8(3):544-51 - PubMed
  9. Nature. 2001 Nov 15;414(6861):338-44 - PubMed
  10. J Am Chem Soc. 2001 Oct 31;123(43):10639-49 - PubMed
  11. Science. 2011 May 13;332(6031):805-9 - PubMed
  12. Chem Soc Rev. 2013 Mar 21;42(6):2228-46 - PubMed
  13. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15560-4 - PubMed
  14. J Am Chem Soc. 2013 Sep 18;135(37):13656-9 - PubMed
  15. J Am Chem Soc. 2015 Apr 8;137(13):4347-57 - PubMed
  16. Phys Chem Chem Phys. 2014 Feb 28;16(8):3623-31 - PubMed
  17. Science. 2011 Nov 4;334(6056):645-8 - PubMed
  18. Adv Mater. 2015 Sep 23;27(36):5309-27 - PubMed
  19. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15729-35 - PubMed
  20. Chemistry. 2016 Jan 4;22(1):32-57 - PubMed
  21. Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14196-200 - PubMed
  22. Nanoscale. 2014 Feb 21;6(4):2061-6 - PubMed
  23. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4606-11 - PubMed
  24. Science. 1998 Apr 17;280(5362):425-7 - PubMed
  25. Science. 2014 Sep 12;345(6202):1326-30 - PubMed

Publication Types