Display options
Share it on

Metabolites. 2016 Apr 26;6(2). doi: 10.3390/metabo6020013.

Sexual Dimorphism in the Response of Mercurialis annua to Stress.

Metabolites

Ezra M Orlofsky, Giorgi Kozhoridze, Lyudmila Lyubenova, Elena Ostrozhenkova, J Barbro Winkler, Peter Schröder, Adelbert Bacher, Wolfgang Eisenreich, Micha Guy, Avi Golan-Goldhirsh

Affiliations

  1. French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel. [email protected].
  2. French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel. [email protected].
  3. Environmental Genomics Research Unit, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg 85764, Germany. [email protected].
  4. Lehrstuhl für Biochemie, Technische Universität München, Garching 85748, Germany. [email protected].
  5. Environmental Simulation Research Unit, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg 85764, Germany. [email protected].
  6. Environmental Genomics Research Unit, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg 85764, Germany. [email protected].
  7. Lehrstuhl für Biochemie, Technische Universität München, Garching 85748, Germany. [email protected].
  8. Lehrstuhl für Biochemie, Technische Universität München, Garching 85748, Germany. [email protected].
  9. French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel. [email protected].
  10. French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel. [email protected].

PMID: 27128954 PMCID: PMC4931544 DOI: 10.3390/metabo6020013

Abstract

The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD) and glutathione transferases (GSTs) were involved in anti-oxidation, detoxification and developmental processes in M. annua. ¹H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while 'Female-only-response' to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants' capacity to survive and complete the reproductive life cycle.

Keywords: anti-oxidation; dioecious; metabolism; salinity; senescence; stress

References

  1. Am J Bot. 2000 Feb;87(2):221-9 - PubMed
  2. J Neurochem. 2000 Aug;75(2):480-6 - PubMed
  3. Am J Bot. 2000 Nov;87(11):1609-18 - PubMed
  4. Physiol Plant. 2001 Aug;112(4):487-494 - PubMed
  5. Plant Physiol. 1997 May;114(1):275-284 - PubMed
  6. Ann Bot. 2003 Jan;91 Spec No:179-94 - PubMed
  7. Phytochemistry. 2003 Mar;62(6):851-8 - PubMed
  8. J Biol Chem. 2003 Jun 27;278(26):23930-5 - PubMed
  9. Plant Cell Environ. 2003 Jun;26(6):845-856 - PubMed
  10. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279 - PubMed
  11. Z Naturforsch C. 2005 Mar-Apr;60(3-4):317-24 - PubMed
  12. Planta. 2005 Dec;222(6):1063-70 - PubMed
  13. Cell Mol Biol Lett. 2005;10(3):515-34 - PubMed
  14. Trends Plant Sci. 2006 Jan;11(1):15-9 - PubMed
  15. Heredity (Edinb). 1997 Jan;78(Pt 1):50-6 - PubMed
  16. Plant Physiol. 1990 Aug;93(4):1521-4 - PubMed
  17. Trends Plant Sci. 2006 Oct;11(10):508-16 - PubMed
  18. Funct Integr Genomics. 2007 Apr;7(2):111-34 - PubMed
  19. Annu Rev Plant Biol. 2007;58:115-36 - PubMed
  20. Phytochemistry. 2007 Nov-Dec;68(22-24):2799-815 - PubMed
  21. Physiol Plant. 2007 Nov;131(3):399-411 - PubMed
  22. New Phytol. 2009;182(3):687-97 - PubMed
  23. Antioxid Redox Signal. 2009 Apr;11(4):861-905 - PubMed
  24. Plant Cell Environ. 2009 Oct;32(10):1401-11 - PubMed
  25. Plant Cell Environ. 2010 Apr;33(4):453-67 - PubMed
  26. BMC Genomics. 2010 Jan 29;11:73 - PubMed
  27. BMC Plant Biol. 2010 Sep 20;10:208 - PubMed
  28. Plant Physiol Biochem. 2010 Dec;48(12):909-30 - PubMed
  29. Ann Bot. 2011 Jan;107(1):119-26 - PubMed
  30. J Toxicol Sci. 2011 Jan;36(1):9-22 - PubMed
  31. J Proteome Res. 2011 Apr 1;10(4):1904-14 - PubMed
  32. Ann Bot. 2011 May;107(6):1039-45 - PubMed
  33. PLoS One. 2011;6(7):e22083 - PubMed
  34. Methods Enzymol. 1990;186:421-31 - PubMed
  35. Chem Biodivers. 2012 Feb;9(2):282-97 - PubMed
  36. J Exp Bot. 2012 Jun;63(10):3709-26 - PubMed
  37. Ann Bot. 2012 Nov;110(7):1471-8 - PubMed
  38. J Exp Bot. 2014 Mar;65(4):1039-49 - PubMed
  39. J Exp Bot. 2015 Oct;66(20):6083-92 - PubMed
  40. J Drug Metab Toxicol. 2012;3(3):1000119 - PubMed
  41. Anal Biochem. 1987 Mar;161(2):559-66 - PubMed
  42. Biochem J. 1983 Mar 15;210(3):899-903 - PubMed
  43. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  44. Plant Physiol. 1998 Dec;118(4):1327-35 - PubMed

Publication Types