Display options
Share it on

ACS Med Chem Lett. 2016 Mar 13;7(5):449-53. doi: 10.1021/acsmedchemlett.5b00420. eCollection 2016 May 12.

Novel Inhibitors of Toxin HipA Reduce Multidrug Tolerant Persisters.

ACS medicinal chemistry letters

Tongqing Li, Ning Yin, Hongbo Liu, Jianfeng Pei, Luhua Lai

Affiliations

  1. Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China.
  2. Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China.
  3. Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.

PMID: 27190591 PMCID: PMC4867474 DOI: 10.1021/acsmedchemlett.5b00420

Abstract

Persisters are a small fraction of drug-tolerant bacteria without any genotype variations. Their existence in many life-threatening infectious diseases presents a major challenge to antibiotic therapy. Persistence is highly related to toxin-antitoxin modules. HipA (high persistence A) was the first toxin found to contribute to Escherichia coli persistence. In this study, we used structure-based virtual screening for HipA inhibitors discovery and identified several novel inhibitors of HipA that remarkably reduced E. coli persistence. The most potent one decreased the persister fraction by more than five-fold with an in vitro K D of 270 ± 90 nM and an ex vivo EC50 of 46 ± 2 and 28 ± 1 μM for ampicillin and kanamycin screening, respectively. These findings demonstrated that inhibition of toxin can reduce bacterial persistence independent of the antibiotics used and provided a framework for persistence treatment by interfering with the toxin-antitoxin modules.

Keywords: HipA (high persistence A); Persistence; drug discovery; toxin-antitoxin (TA) module

References

  1. Science. 2004 Sep 10;305(5690):1622-5 - PubMed
  2. J Med Chem. 2010 Apr 8;53(7):2719-40 - PubMed
  3. Nature. 2004 Jul 8;430(6996):242-9 - PubMed
  4. Cell. 2013 Aug 29;154(5):1140-50 - PubMed
  5. Annu Rev Microbiol. 2012;66:103-23 - PubMed
  6. J Biol Chem. 2014 Feb 14;289(7):4191-205 - PubMed
  7. Bioorg Med Chem. 2012 Feb 1;20(3):1240-50 - PubMed
  8. Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13517-22 - PubMed
  9. Nature. 2015 Aug 6;524(7563):59-64 - PubMed
  10. J Bacteriol. 2006 Jun;188(11):3826-36 - PubMed
  11. Bioorg Med Chem Lett. 2013 Aug 15;23(16):4648-51 - PubMed
  12. Nat Rev Microbiol. 2007 Jan;5(1):48-56 - PubMed
  13. Bioorg Med Chem Lett. 2009 Mar 1;19(5):1512-6 - PubMed
  14. J Med Chem. 2014 Mar 27;57(6):2334-56 - PubMed
  15. Cell Rep. 2012 Sep 27;2(3):518-25 - PubMed
  16. J Bacteriol. 1983 Aug;155(2):768-75 - PubMed
  17. PLoS One. 2012;7(9):e45778 - PubMed
  18. Nature. 2011 May 12;473(7346):216-20 - PubMed
  19. Nat Chem Biol. 2012 Mar 18;8(5):431-3 - PubMed
  20. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6559-62 - PubMed
  21. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13206-11 - PubMed
  22. Mol Microbiol. 2003 Nov;50(4):1199-213 - PubMed
  23. J Bacteriol. 2013 Jul;195(14):3173-82 - PubMed
  24. J Med Chem. 2009 Nov 26;52(22):7044-53 - PubMed
  25. Science. 2009 Jan 16;323(5912):396-401 - PubMed
  26. Cell. 2014 Apr 24;157(3):539-48 - PubMed
  27. PLoS Pathog. 2012;8(10):e1002954 - PubMed
  28. J Bacteriol. 2004 Dec;186(24):8172-80 - PubMed

Publication Types