Display options
Share it on

J Immunother Cancer. 2016 May 17;4:28. doi: 10.1186/s40425-016-0132-2. eCollection 2016.

Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma.

Journal for immunotherapy of cancer

Mira A Patel, Jennifer E Kim, Debebe Theodros, Ada Tam, Esteban Velarde, Christina M Kochel, Brian Francica, Thomas R Nirschl, Ali Ghasemzadeh, Dimitrios Mathios, Sarah Harris-Bookman, Christopher C Jackson, Christina Jackson, Xiaobu Ye, Phuoc T Tran, Betty Tyler, Vladimir Coric, Mark Selby, Henry Brem, Charles G Drake, Drew M Pardoll, Michael Lim

Affiliations

  1. The Johns Hopkins University School of Medicine, Baltimore, USA.
  2. Department of Oncology, Baltimore, USA.
  3. Department Radiation Oncology, Baltimore, USA.
  4. Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA.
  5. and the Brady Urological Institute, Baltimore, USA.
  6. Bristol-Myers Squibb Company, San Francisco, CA USA.

PMID: 27190629 PMCID: PMC4869343 DOI: 10.1186/s40425-016-0132-2

Abstract

BACKGROUND: Glioblastoma (GBM) is a poorly immunogenic neoplasm treated with focused radiation. Immunotherapy has demonstrated synergistic survival effects with stereotactic radiosurgery (SRS) in murine GBM. GITR is a co-stimulatory molecule expressed constitutively on regulatory T-cells and by effector T-cells upon activation. We tested the hypothesis that anti-GITR monoclonal antibody (mAb) and SRS together would confer an immune-mediated survival benefit in glioma using the orthotopic GL261 glioma model.

METHODS: Mice received SRS and anti-GITR 10 days after implantation. The anti-GITR mAbs tested were formatted as mouse IgG1 D265A (anti-GITR (1)) and IgG2a (anti-GITR (2a)) isotypes. Mice were randomized to four treatment groups: (1) control; (2) SRS; (3) anti-GITR; (4) anti-GITR/SRS. SRS was delivered to the tumor in one fraction, and mice were treated with mAb thrice. Mice were euthanized on day 21 to analyze the immunologic profile of tumor, spleen, and tumor draining lymph nodes.

RESULTS: Anti-GITR (1)/SRS significantly improved survival over either treatment alone (p < .0001) with a cure rate of 24 % versus 0 % in a T-lymphocyte-dependent manner. There was elevated intratumoral CD4+ effector cell infiltration relative to Treg infiltration in mice treated with anti-GITR (1)/SRS, as well as significantly elevated IFNγ and IL-2 production by CD4+ T-cells and elevated IFNγ and TNFα production by CD8+ T-cells. There was increased mRNA expression of M1 markers and decreased expression of M2 markers in tumor infiltrating mononuclear cells. The anti-GITR (2a)/SRS combination did not improve survival, induce tumor regression, or result in Treg depletion.

CONCLUSIONS: These findings provide preclinical evidence for the use of anti-GITR (1) non-depleting antibodies in combination with SRS in GBM.

Keywords: Antibody; GITR; Gioblastoma; Immune checkpoint; Immunotherapy; Radiation

References

  1. Ann Oncol. 2013 Jul;24(7):1813-21 - PubMed
  2. N Engl J Med. 2001 Jan 11;344(2):114-23 - PubMed
  3. Cancer Res. 2008 Jul 15;68(14):5948-54 - PubMed
  4. Nat Med. 2007 Sep;13(9):1050-9 - PubMed
  5. Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):728-34 - PubMed
  6. J Immunol. 2004 Oct 15;173(8):5008-20 - PubMed
  7. Immunol Rev. 2011 Nov;244(1):218-31 - PubMed
  8. Int J Radiat Oncol Biol Phys. 2008 Aug 1;71(5):1591-9 - PubMed
  9. Semin Oncol. 2015 Jun;42(3):423-8 - PubMed
  10. Oncology (Williston Park). 2015 May;29(5):331-40 - PubMed
  11. Cancer Immunol Res. 2014 Sep;2(9):867-77 - PubMed
  12. Trends Immunol. 2001 Mar;22(3):141-8 - PubMed
  13. Int J Radiat Oncol Biol Phys. 2005 Nov 1;63(3):655-66 - PubMed
  14. Neurosurg Rev. 2015 Oct;38(4):705-13 - PubMed
  15. Cancer Sci. 2009 Jul;100(7):1317-25 - PubMed
  16. Nat Rev Immunol. 2012 Mar 22;12(4):253-68 - PubMed
  17. PLoS One. 2010 May 03;5(5):e10436 - PubMed
  18. PLoS One. 2014 Jul 11;9(7):e101764 - PubMed
  19. Neurosurg Clin N Am. 2012 Apr;23 (2):307-22, ix - PubMed
  20. Curr Opin Immunol. 2008 Oct;20(5):504-11 - PubMed
  21. Cancer Res. 2006 May 1;66(9):4904-12 - PubMed
  22. J Exp Med. 2013 Aug 26;210(9):1685-93 - PubMed
  23. Clin Cancer Res. 2012 Sep 1;18(17):4657-68 - PubMed
  24. Immunol Cell Biol. 2014 Jul;92(6):475-80 - PubMed
  25. Cancer Immunol Res. 2015 Feb;3(2):149-60 - PubMed
  26. Curr Opin Immunol. 2012 Apr;24(2):217-24 - PubMed
  27. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6216-21 - PubMed
  28. Semin Oncol. 2003 Dec;30(6 Suppl 19):10-4 - PubMed
  29. Nat Med. 2015 Sep;21(9):1010-7 - PubMed
  30. Clin Dev Immunol. 2011;2011:732413 - PubMed
  31. Neurosurgery. 2012 Aug;71(2):201-22; discussion 222-3 - PubMed
  32. Nature. 2005 Aug 25;436(7054):1186-90 - PubMed
  33. Cancer Immunol Immunother. 2010 Sep;59(9):1367-77 - PubMed
  34. J Exp Med. 2005 Oct 3;202(7):885-91 - PubMed
  35. Cancer Immunol Res. 2013 Nov;1(5):320-31 - PubMed
  36. Cancer Cell. 2009 Aug 4;16(2):91-102 - PubMed
  37. J Transl Med. 2014 Feb 07;12:36 - PubMed
  38. Int J Radiat Oncol Biol Phys. 2013 Jun 1;86(2):343-9 - PubMed
  39. Trends Mol Med. 2004 Jun;10(6):251-7 - PubMed
  40. N Engl J Med. 2005 Mar 10;352(10 ):987-96 - PubMed
  41. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15059-64 - PubMed
  42. J Exp Med. 2013 Aug 26;210(9):1695-710 - PubMed

Publication Types

Grant support