Display options
Share it on

Nano Res. 2016 May;9(5):1393-1408. doi: 10.1007/s12274-016-1035-8. Epub 2016 Mar 04.

NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors.

Nano research

Flavio Curnis, Martina Fiocchi, Angelina Sacchi, Alessandro Gori, Anna Gasparri, Angelo Corti

Affiliations

  1. Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.
  2. Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan 20131, Italy.
  3. Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita Salute San Raffaele University, 20132, Milan.

PMID: 27226823 PMCID: PMC4876925 DOI: 10.1007/s12274-016-1035-8

Abstract

Colloidal gold (Au), a well-tolerated nanomaterial, is currently exploited for several applications in nanomedicine. We show that gold nanoparticles tagged with a novel tumor-homing peptide containing Asn-Gly-Arg (NGR), a ligand of CD13 expressed by the tumor neovasculature, can be exploited as carriers for cytokine delivery to tumors. Biochemical and functional studies showed that the NGR molecular scaffold/linker used for gold functionalization is critical for CD13 recognition. Using fibrosarcoma-bearing mice, NGR-tagged nanodrugs could deliver extremely low, yet pharmacologically active doses of tumor necrosis factor (TNF), an anticancer cytokine, to tumors with no evidence of toxicity. Mechanistic studies confirmed that CD13 targeting was a primary mechanism of drug delivery and excluded a major role of integrin targeting consequent to NGR deamidation, a degradation reaction that generates the isoAsp-Gly-Arg (isoDGR) integrin ligand. NGR-tagged gold nanoparticles can be used, in principle, as a novel platform for single- or multi-cytokine delivery to tumor endothelial cells for cancer therapy.

Keywords: Asn-Gly-Arg (NGR); CD13; albumin; gold nanoparticles; integrin; isoAsp-Gly-Arg (isoDGR); tumor necrosis factor

References

  1. Eur J Cancer. 2010 Jan;46(1):198-206 - PubMed
  2. J Med Chem. 2013 Feb 28;56(4):1509-19 - PubMed
  3. Cancer Res. 2004 Jan 15;64(2):565-71 - PubMed
  4. Angew Chem Int Ed Engl. 2010 Apr 26;49(19):3280-94 - PubMed
  5. Angew Chem Int Ed Engl. 2010 Nov 22;49(48):9278-81 - PubMed
  6. Methods Mol Biol. 2010;624:375-84 - PubMed
  7. Cancer Res. 2002 Feb 1;62(3):867-74 - PubMed
  8. J Biol Chem. 2002 Dec 6;277(49):47891-7 - PubMed
  9. J Biol Chem. 2006 Nov 24;281(47):36466-76 - PubMed
  10. Small. 2013 Mar 11;9(5):673-8 - PubMed
  11. Cancer Res. 2008 Sep 1;68(17):7073-82 - PubMed
  12. Int J Pept Protein Res. 1990 Mar;35(3):161-214 - PubMed
  13. J Clin Oncol. 2010 May 20;28(15):2604-11 - PubMed
  14. Cancer Res. 2005 Apr 1;65(7):2906-13 - PubMed
  15. J Cell Sci. 2011 Feb 15;124(Pt 4):515-22 - PubMed
  16. Cancer Res. 2000 Feb 1;60(3):722-7 - PubMed
  17. Cytotherapy. 2007;9(1):60-8 - PubMed
  18. Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20717-22 - PubMed
  19. J Biol Chem. 2012 Oct 26;287(44):36804-13 - PubMed
  20. Clin Cancer Res. 2010 Dec 15;16(24):6139-49 - PubMed
  21. J Biol Chem. 2008 Jul 11;283(28):19757-68 - PubMed
  22. J Clin Invest. 2002 Aug;110(4):475-82 - PubMed
  23. J Biol Chem. 2010 Mar 19;285(12):9114-23 - PubMed
  24. BioDrugs. 2013 Dec;27(6):591-603 - PubMed
  25. Front Physiol. 2014 Aug 12;5:299 - PubMed
  26. J Biol Chem. 2014 Dec 12;289(50):34520-9 - PubMed
  27. Methods Mol Med. 2004;98:9-22 - PubMed
  28. Nanotechnol Sci Appl. 2008 Sep 19;1:17-32 - PubMed
  29. Drug Deliv. 2004 May-Jun;11(3):169-83 - PubMed
  30. J Histochem Cytochem. 2011 Jan;59(1):47-59 - PubMed
  31. Nat Biotechnol. 2000 Nov;18(11):1185-90 - PubMed

Publication Types

Grant support