Display options
Share it on

Neurophotonics. 2016 Jul;3(3):031410. doi: 10.1117/1.NPh.3.3.031410. Epub 2016 May 23.

Correction of motion artifacts and serial correlations for real-time functional near-infrared spectroscopy.

Neurophotonics

Jeffrey W Barker, Andrea L Rosso, Patrick J Sparto, Theodore J Huppert

Affiliations

  1. University of Pittsburgh , Department of Radiology, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, United States.
  2. University of Pittsburgh , Department of Epidemiology, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, United States.
  3. University of Pittsburgh , Department of Physical Therapy, Suite 210 Bridgeside Point, Pittsburgh, Pennsylvania 15213, United States.

PMID: 27226974 PMCID: PMC4876834 DOI: 10.1117/1.NPh.3.3.031410

Abstract

Functional near-infrared spectroscopy (fNIRS) is a relatively low-cost, portable, noninvasive neuroimaging technique for measuring task-evoked hemodynamic changes in the brain. Because fNIRS can be applied to a wide range of populations, such as children or infants, and under a variety of study conditions, including those involving physical movement, gait, or balance, fNIRS data are often confounded by motion artifacts. Furthermore, the high sampling rate of fNIRS leads to high temporal autocorrelation due to systemic physiology. These two factors can reduce the sensitivity and specificity of detecting hemodynamic changes. In a previous work, we showed that these factors could be mitigated by autoregressive-based prewhitening followed by the application of an iterative reweighted least squares algorithm offline. This current work extends these same ideas to real-time analysis of brain signals by modifying the linear Kalman filter, resulting in an algorithm for online estimation that is robust to systemic physiology and motion artifacts. We evaluated the performance of the proposed method via simulations of evoked hemodynamics that were added to experimental resting-state data, which provided realistic fNIRS noise. Last, we applied the method post hoc to data from a standing balance task. Overall, the new method showed good agreement with the analogous offline algorithm, in which both methods outperformed ordinary least squares methods.

Keywords: Kalman filter; functional near-infrared spectroscopy; motion artifacts; real-time analysis; serial correlations

References

  1. Magn Reson Imaging. 2006 May;24(4):495-505 - PubMed
  2. Neuroimage. 2009 May 15;46(1):133-43 - PubMed
  3. Neuroimage. 2007 Feb 15;34(4):1416-27 - PubMed
  4. PLoS One. 2014 Jul 17;9(7):e101729 - PubMed
  5. Neuroimage. 2008 Jan 15;39(2):600-7 - PubMed
  6. Adv Exp Med Biol. 1988;222:183-9 - PubMed
  7. Neuroimage. 2001 Nov;14(5):1186-92 - PubMed
  8. Ann Phys Rehabil Med. 2015 Feb;58(1):9-13 - PubMed
  9. Jpn J Thorac Cardiovasc Surg. 2003 Apr;51(4):154-7 - PubMed
  10. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2010 Jan;17(1):1-18 - PubMed
  11. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5648-51 - PubMed
  12. Neuroimage. 2012 Aug 15;62(2):682-92 - PubMed
  13. Neuroreport. 1997 Jan 20;8(2):545-9 - PubMed
  14. J Neural Eng. 2007 Sep;4(3):219-26 - PubMed
  15. Neurophotonics. 2016 Jan;3(1):010401 - PubMed
  16. PLoS One. 2013;8(3):e60265 - PubMed
  17. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:4840-3 - PubMed
  18. Int Rev Neurobiol. 2009;86:107-17 - PubMed
  19. Neuroimage. 2013 Aug 1;76:1-10 - PubMed
  20. Prog Brain Res. 2006;159:369-91 - PubMed
  21. Neuroimage. 2012 Jan 2;59(1):519-29 - PubMed
  22. Appl Opt. 2009 Apr 1;48(10):D280-98 - PubMed
  23. Science. 1977 Dec 23;198(4323):1264-7 - PubMed
  24. Biomed Opt Express. 2013 Jul 17;4(8):1366-79 - PubMed
  25. Med Intensiva. 2015 Mar;39(2):68-75 - PubMed
  26. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4911-4 - PubMed
  27. Gait Posture. 2012 Mar;35(3):367-72 - PubMed
  28. J Perinat Med. 2001;29(4):335-43 - PubMed
  29. Neuroimage. 2014 Jan 15;85 Pt 1:192-201 - PubMed
  30. Neuroimage. 2014 Jan 15;85 Pt 1:181-91 - PubMed
  31. Neuroimage. 2013 Jul 1;74:318-25 - PubMed
  32. ASAIO J. 2012 Mar-Apr;58(2):122-6 - PubMed
  33. Front Hum Neurosci. 2013 Dec 13;7:861 - PubMed
  34. Neurosci Lett. 2012 Apr 11;514(1):35-41 - PubMed
  35. Front Neurosci. 2012 Oct 11;6:147 - PubMed
  36. IEEE Trans Med Imaging. 2009 Mar;28(3):415-22 - PubMed
  37. Neuroimage. 2014 Jan 15;85 Pt 1:127-35 - PubMed
  38. Neuroimage. 2012 Feb 1;59(3):2430-7 - PubMed
  39. Biomed Eng Online. 2010 Dec 08;9:82 - PubMed

Publication Types

Grant support