Display options
Share it on

Temperature (Austin). 2016 Mar 02;3(1):77-91. doi: 10.1080/23328940.2015.1135689. eCollection 2016.

Comprehensive thermal preference phenotyping in mice using a novel automated circular gradient assay.

Temperature (Austin, Tex.)

Filip Touska, Zoltán Winter, Alexander Mueller, Viktorie Vlachova, Jonas Larsen, Katharina Zimmermann

Affiliations

  1. Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
  2. Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg , Erlangen, Germany.
  3. Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic.
  4. Independent scholar , Erlangen, Germany.

PMID: 27227099 PMCID: PMC4861200 DOI: 10.1080/23328940.2015.1135689

Abstract

Currently available behavioral assays to quantify normal cold sensitivity, cold hypersensitivity and cold hyperalgesia in mice have betimes created conflicting results in the literature. Some only capture a limited spectrum of thermal experiences, others are prone to experimenter bias or are not sensitive enough to detect the contribution of ion channels to cold sensing because in mice smaller alterations in cold nociception do not manifest as frank behavioral changes. To overcome current limitations we have designed a novel device that is automated, provides a high degree of freedom, i.e. thermal choice, and eliminates experimenter bias. The device represents a thermal gradient assay designed as a circular running track. It allows discerning exploratory behavior from thermal selection behavior and provides increased accuracy by providing measured values in duplicate and by removing edge artifacts. Our custom-designed automated offline analysis by a blob detection algorithm is devoid of movement artifacts, removes light reflection artifacts and provides an internal quality control parameter which we validated. The assay delivers discrete information on a large range of parameters extracted from the occupancy of thermally defined zones such as preference temperature and skew of the distribution. We demonstrate that the assay allows increasingly accurate phenotyping of thermal sensitivity in transgenic mice by disclosing yet unrecognized details on the phenotypes of TRPM8-, TRPA1- and TRPM8/A1-deficient mice.

Keywords: TRPA1; TRPM8; nociception; skew; thermal selection; thermosensation

References

  1. Acta Physiol (Oxf). 2014 Mar;210(3):498-507 - PubMed
  2. Nature. 2002 Mar 7;416(6876):52-8 - PubMed
  3. J Neurosci. 2010 Nov 10;30(45):15165-74 - PubMed
  4. J Neurosci. 2013 Mar 27;33(13):5533-41 - PubMed
  5. Pain. 2013 Sep;154(9):1749-57 - PubMed
  6. J Neurosci. 2013 Oct 16;33(42):16627-41 - PubMed
  7. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19492-7 - PubMed
  8. J Neurosci. 2013 Feb 13;33(7):2837-48 - PubMed
  9. Neuron. 2013 Apr 10;78(1):138-51 - PubMed
  10. J Neurosci. 2013 Apr 3;33(14):6154-9 - PubMed
  11. J Neurosci. 2005 Feb 2;25(5):1304-10 - PubMed
  12. Nat Commun. 2014 Dec 11;5:5732 - PubMed
  13. Biochem Pharmacol. 2015 Jan 15;93(2):125-40 - PubMed
  14. J Neurosci Methods. 2014 Mar 15;224:48-57 - PubMed
  15. Neuron. 2004 Mar 25;41(6):849-57 - PubMed
  16. Cell. 2002 Mar 8;108(5):705-15 - PubMed
  17. J Clin Invest. 2005 Sep;115(9):2393-401 - PubMed
  18. Mol Pain. 2011 May 17;7:37 - PubMed
  19. Pain. 2013 Oct;154(10):1999-2006 - PubMed
  20. J Neurosci. 2015 Jan 14;35(2):571-82 - PubMed
  21. Nat Rev Neurosci. 2014 Sep;15(9):573-89 - PubMed
  22. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18114-9 - PubMed
  23. Nature. 2007 Jul 12;448(7150):204-8 - PubMed
  24. Pain. 2010 Aug;150(2):340-50 - PubMed
  25. Physiol Behav. 1999 Jun;66(4):585-9 - PubMed
  26. Nat Protoc. 2009;4(2):174-96 - PubMed
  27. Neuron. 2007 May 3;54(3):379-86 - PubMed
  28. Mol Pain. 2010 Jan 21;6:4 - PubMed
  29. EMBO J. 2012 Oct 3;31(19):3795-808 - PubMed
  30. Pain. 2014 Oct;155(10):2124-33 - PubMed
  31. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1273-8 - PubMed
  32. Physiol Behav. 1986;38(2):219-28 - PubMed
  33. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16901-6 - PubMed
  34. Toxicon. 2001 Sep;39(9):1367-74 - PubMed
  35. Am J Physiol. 1994 Jul;267(1 Pt 2):R71-7 - PubMed
  36. Neuron. 2007 May 3;54(3):371-8 - PubMed
  37. Cell. 2006 Mar 24;124(6):1269-82 - PubMed
  38. Cell. 2003 Mar 21;112(6):819-29 - PubMed
  39. Neuron. 2006 Apr 20;50(2):277-89 - PubMed
  40. J Physiol. 2001 Sep 15;535(Pt 3):855-65 - PubMed

Publication Types