Display options
Share it on

Sci Rep. 2016 Jun 06;6:27428. doi: 10.1038/srep27428.

Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities.

Scientific reports

Cuicui Lu, Yong-Chun Liu, Xiaoyong Hu, Hong Yang, Qihuang Gong

Affiliations

  1. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, People's Republic of China.
  2. State Key Laboratory for Mesoscopic Physics &Department of Physics, Peking University, Beijing 100871, People's Republic of China.
  3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China.

PMID: 27263859 PMCID: PMC4893661 DOI: 10.1038/srep27428

Abstract

Integrated nanoscale photonic devices have wide applications ranging from optical interconnects and optical computing to optical communications. Wavelength demultiplexer is an essential on-chip optical component which can separate the incident wavelength into different channels; however, the experimental progress is very limited. Here, using a multi-component nano-cavity design, we realize an ultracompact, broadband and high-contrast wavelength demultiplexer, with 2.3 μm feature size, 200 nm operation bandwidth (from 780 nm to 980 nm) and a contrast ratio up to 13.7 dB. The physical mechanism is based on the strong modulation of the surface plasmon polaritons induced by the multi-component nano-cavities, and it can be generalized to other nanoscale photonic devices. This provides a strategy for constructing on-chip photon routers, and also has applications for chip-integrated optical filter and optical logic gates.

References

  1. Phys Rev Lett. 2006 Mar 10;96(9):097401 - PubMed
  2. Opt Express. 2008 Nov 10;16(23):19091-6 - PubMed
  3. Sci Rep. 2014 Nov 27;4:7210 - PubMed
  4. Nature. 2009 Jan 22;457(7228):455-8 - PubMed
  5. Phys Rev Lett. 2005 Dec 16;95(25):257403 - PubMed
  6. Phys Rev Lett. 2003 Apr 25;90(16):167401 - PubMed
  7. Opt Express. 2009 Jun 8;17(12):10385-92 - PubMed
  8. Sci Rep. 2013 Sep 27;3:2778 - PubMed
  9. Phys Rev Lett. 2005 Dec 31;95(26):263902 - PubMed
  10. Nature. 2003 Aug 14;424(6950):824-30 - PubMed
  11. Nat Commun. 2011 Nov 08;2:525 - PubMed
  12. Opt Express. 2011 Mar 28;19(7):6541-8 - PubMed
  13. Science. 2002 Aug 2;297(5582):820-2 - PubMed
  14. Opt Express. 2014 Nov 3;22(22):27175-82 - PubMed
  15. Nature. 2006 Mar 23;440(7083):508-11 - PubMed
  16. Opt Lett. 2015 Mar 1;40(5):685-8 - PubMed
  17. Opt Lett. 2011 Jul 1;36(13):2590-2 - PubMed
  18. Opt Lett. 2013 Nov 15;38(22):4853-6 - PubMed
  19. Sci Rep. 2013;3:1918 - PubMed
  20. Phys Rev Lett. 2007 Apr 13;98(15):153902 - PubMed
  21. Nano Lett. 2012 Nov 14;12(11):5784-90 - PubMed
  22. Nanoscale. 2014 Nov 21;6(22):13487-93 - PubMed
  23. Sci Rep. 2014 Jan 27;4:3869 - PubMed

Publication Types