Display options
Share it on

ACS Cent Sci. 2016 Feb 24;2(2):75-9. doi: 10.1021/acscentsci.5b00325. Epub 2016 Feb 05.

Quantitatively Resolving Ligand-Receptor Bonds on Cell Surfaces Using Force-Induced Remnant Magnetization Spectroscopy.

ACS central science

Yi-Ting Chen, Andrew C Jamison, T Randall Lee, Shoujun Xu

Affiliations

  1. Department of Chemistry, University of Houston , Houston, Texas 77204, United States.

PMID: 27163031 PMCID: PMC4827459 DOI: 10.1021/acscentsci.5b00325

Abstract

Molecule-specific noncovalent bonding on cell surfaces is the foundation for cellular recognition and functioning. A major challenge in probing these bonds is to resolve the specific bonds quantitatively and efficiently from the nonspecific interactions in a complex environment. Using force-induced remnant magnetization spectroscopy (FIRMS), we were able to resolve quantitatively three different interactions for magnetic beads bearing anti-CD4 antibodies with CD4(+) T cell surfaces based upon their binding forces. The binding force of the CD4 antibody-antigen bonds was determined to be 75 ± 3 pN. For comparison, the same bonds were also studied on a functionalized substrate surface, and the binding force was determined to be 90 ± 6 pN. The 15 pN difference revealed by high-resolution FIRMS illustrates the significant impact of the bonding environment. Because the force difference was unaffected by the cell number or the receptor density on the substrate, we attributed it to the possible conformational or local environmental differences of the CD4 antigens between the cell surface and substrate surface. Our results show that the high force resolution and detection efficiency afforded by FIRMS are valuable for studying protein-protein interactions on cell surfaces.

References

  1. Anal Chem. 1999 Feb 15;71(4):777-90 - PubMed
  2. Nature. 2003 Apr 10;422(6932):596-9 - PubMed
  3. Biophys J. 2004 Mar;86(3):1753-62 - PubMed
  4. Nat Methods. 2005 Jul;2(7):515-20 - PubMed
  5. Biophys J. 2005 Nov;89(5):3203-13 - PubMed
  6. Chem Biol. 2006 May;13(5):505-12 - PubMed
  7. Micron. 2007;38(5):446-61 - PubMed
  8. Nano Lett. 2007 Mar;7(3):796-801 - PubMed
  9. J Phys Chem B. 2007 Dec 6;111(48):13619-25 - PubMed
  10. Biochem Biophys Res Commun. 2008 Sep 12;374(1):90-4 - PubMed
  11. Angew Chem Int Ed Engl. 2009;48(31):5679-82 - PubMed
  12. Opt Lett. 2010 Mar 1;35(5):661-3 - PubMed
  13. Biophys J. 2010 Jun 2;98(11):L53-5 - PubMed
  14. Nat Methods. 2011 Feb;8(2):123-7 - PubMed
  15. Biochem Biophys Res Commun. 2011 Apr 8;407(2):301-6 - PubMed
  16. Angew Chem Int Ed Engl. 2011 May 2;50(19):4407-9 - PubMed
  17. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10963-8 - PubMed
  18. Anal Bioanal Chem. 2012 Apr;402(10):3205-9 - PubMed
  19. Anal Chem. 2012 Nov 6;84(21):9287-94 - PubMed
  20. J Phys Chem B. 2012 Nov 15;116(45):13331-7 - PubMed
  21. Analyst. 2013 Feb 21;138(3):787-97 - PubMed
  22. Langmuir. 2012 Dec 11;28(49):16738-44 - PubMed
  23. Anal Chem. 2013 Feb 5;85(3):1773-7 - PubMed
  24. Methods. 2013 Apr 1;60(2):169-78 - PubMed
  25. J Phys Chem B. 2013 Jun 27;117(25):7554-8 - PubMed
  26. Biochim Biophys Acta. 2014 Mar;1840(3):1028-50 - PubMed
  27. Biochem Biophys Res Commun. 2014 Jun 13;448(4):372-8 - PubMed
  28. ACS Nano. 2014 Jun 24;8(6):5600-9 - PubMed
  29. Chem Commun (Camb). 2014 Sep 25;50(74):10786-9 - PubMed
  30. Nat Methods. 2015 Jan;12(1):47-50 - PubMed
  31. Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794 - PubMed
  32. Nature. 1998 Jul 2;394(6688):52-5 - PubMed
  33. Cytometry. 1998 Oct 1;33(2):197-205 - PubMed

Publication Types