Display options
Share it on

Nat Commun. 2016 May 27;7:11747. doi: 10.1038/ncomms11747.

Bipartite electronic superstructures in the vortex core of Bi2Sr2CaCu2O8+δ.

Nature communications

T Machida, Y Kohsaka, K Matsuoka, K Iwaya, T Hanaguri, T Tamegai

Affiliations

  1. RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan.
  2. Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

PMID: 27230420 PMCID: PMC4895017 DOI: 10.1038/ncomms11747

Abstract

The central issue in the physics of cuprate superconductivity is the mutual relationship among superconductivity, pseudogap and broken-spatial-symmetry states. A magnetic field B suppresses superconductivity, providing an opportunity to investigate the competition among these states. Although various B-induced electronic superstructures have been reported, their energy, spatial and momentum-space structures are unclear. Here, we show using spectroscopic-imaging scanning tunnelling microscopy on Bi2Sr2CaCu2O8+δ that there are two distinct B-induced electronic superstructures, both being localized in the vortex core but appearing at different energies. In the low-energy range where the nodal Bogoliubov quasiparticles are well-defined, we observe the so-called vortex checkerboard that we identify as the B-enhanced quasiparticle interference pattern. By contrast, in the high-energy region where the pseudogap develops, the broken-spatial-symmetry patterns that pre-exist at B=0 T is locally enhanced in the vortex core. This evidences the competition between superconductivity and the broken-spatial-symmetry state that is associated with the pseudogap.

References

  1. Science. 2014 May 9;344(6184):612-6 - PubMed
  2. Nature. 2015 Feb 12;518(7538):179-86 - PubMed
  3. Nature. 2010 Jan 28;463(7280):519-22 - PubMed
  4. Science. 2002 Aug 16;297(5584):1148-51 - PubMed
  5. Science. 2002 Jan 18;295(5554):466-9 - PubMed
  6. Nature. 2010 Jul 15;466(7304):347-51 - PubMed
  7. Science. 2014 Jan 24;343(6169):390-2 - PubMed
  8. Nat Commun. 2013;4:2113 - PubMed
  9. Nature. 2003 Apr 10;422(6932):592-6 - PubMed
  10. Science. 2014 May 9;344(6184):608-11 - PubMed
  11. Phys Rev Lett. 2000 Aug 14;85(7):1536-9 - PubMed
  12. Science. 2014 Jan 24;343(6169):393-6 - PubMed
  13. Science. 2015 Nov 20;350(6263):949-52 - PubMed
  14. Science. 2007 Mar 9;315(5817):1380-5 - PubMed
  15. Phys Rev Lett. 2013 May 3;110(18):187001 - PubMed
  16. Science. 2001 Mar 2;291(5509):1759-62 - PubMed
  17. Nature. 2002 Jan 17;415(6869):299-302 - PubMed
  18. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):E3026-32 - PubMed
  19. Science. 2009 Feb 13;323(5916):923-6 - PubMed
  20. Nature. 2011 Sep 07;477(7363):191-4 - PubMed
  21. Nature. 2008 Aug 28;454(7208):1072-8 - PubMed
  22. Science. 2011 Mar 25;331(6024):1579-83 - PubMed

Publication Types