Display options
Share it on

BioData Min. 2016 May 26;9:21. doi: 10.1186/s13040-016-0097-1. eCollection 2016.

Data integration to prioritize drugs using genomics and curated data.

BioData mining

Riku Louhimo, Marko Laakso, Denis Belitskin, Juha Klefström, Rainer Lehtonen, Sampsa Hautaniemi

Affiliations

  1. Genome Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland.
  2. Translational Cancer Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Helsinki, FI-00014 Finland.

PMID: 27231484 PMCID: PMC4881054 DOI: 10.1186/s13040-016-0097-1

Abstract

BACKGROUND: Genomic alterations affecting drug target proteins occur in several tumor types and are prime candidates for patient-specific tailored treatments. Increasingly, patients likely to benefit from targeted cancer therapy are selected based on molecular alterations. The selection of a precision therapy benefiting most patients is challenging but can be enhanced with integration of multiple types of molecular data. Data integration approaches for drug prioritization have successfully integrated diverse molecular data but do not take full advantage of existing data and literature.

RESULTS: We have built a knowledge-base which connects data from public databases with molecular results from over 2200 tumors, signaling pathways and drug-target databases. Moreover, we have developed a data mining algorithm to effectively utilize this heterogeneous knowledge-base. Our algorithm is designed to facilitate retargeting of existing drugs by stratifying samples and prioritizing drug targets. We analyzed 797 primary tumors from The Cancer Genome Atlas breast and ovarian cancer cohorts using our framework. FGFR, CDK and HER2 inhibitors were prioritized in breast and ovarian data sets. Estrogen receptor positive breast tumors showed potential sensitivity to targeted inhibitors of FGFR due to activation of FGFR3.

CONCLUSIONS: Our results suggest that computational sample stratification selects potentially sensitive samples for targeted therapies and can aid in precision medicine drug repositioning. Source code is available from http://csblcanges.fimm.fi/GOPredict/.

Keywords: Breast cancer; Cancer; Data integration; Drug prioritization; Gene ontology

References

  1. Nucleic Acids Res. 2015 Jan;43(Database issue):D914-20 - PubMed
  2. Nat Methods. 2012 Feb 12;9(4):351-5 - PubMed
  3. Clin Pharmacol Ther. 2013 Apr;93(4):335-41 - PubMed
  4. Genome Med. 2012 Mar 30;4(3):27 - PubMed
  5. Cancer Res. 2013 Mar 15;73(6):1699-708 - PubMed
  6. Bioinformatics. 2010 Jul 15;26(14):1802-3 - PubMed
  7. Cancer Res. 2012 Oct 1;72 (19):5048-59 - PubMed
  8. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  9. Bioinformatics. 2012 Feb 15;28(4):573-80 - PubMed
  10. Clin Cancer Res. 2013 Jul 1;19(13):3693-702 - PubMed
  11. Science. 2015 Jan 23;347(6220):1260419 - PubMed
  12. J Cancer Res Clin Oncol. 2011 Oct;137(10):1409-18 - PubMed
  13. Clin Cancer Res. 2008 Oct 1;14(19):5984-93 - PubMed
  14. Cell. 2011 Apr 1;145(1):19-24 - PubMed
  15. Genomics. 2006 Dec;88(6):779-90 - PubMed
  16. Nature. 2009 Jun 18;459(7249):1005-9 - PubMed
  17. Genome Res. 2012 Feb;22(2):183-7 - PubMed
  18. Nature. 2012 Jul 18;487(7407):330-7 - PubMed
  19. Nat Rev Clin Oncol. 2011 Mar;8(3):184-7 - PubMed
  20. Nucleic Acids Res. 2011 Jan;39(Database issue):D945-50 - PubMed
  21. Cancer Lett. 2012 Apr 28;317(2):172-83 - PubMed
  22. Cancer Res. 2014 Mar 1;74(5):1463-74 - PubMed
  23. Nat Rev Cancer. 2010 Jan;10 (1):59-64 - PubMed
  24. Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41 - PubMed
  25. Nat Rev Drug Discov. 2012 Dec;11(12):892-4 - PubMed
  26. N Engl J Med. 2007 Jul 5;357(1):39-51 - PubMed
  27. Front Oncol. 2014 Mar 03;4:34 - PubMed
  28. Database (Oxford). 2015 Jan 28;2015:null - PubMed
  29. Nature. 2011 Jun 29;474(7353):609-15 - PubMed
  30. Nat Biotechnol. 2006 May;24(5):537-44 - PubMed
  31. Nature. 2010 Feb 18;463(7283):899-905 - PubMed
  32. Nat Rev Cancer. 2013 Oct;13(10):714-26 - PubMed
  33. Cancer Lett. 2016 May 28;375(1):62-72 - PubMed
  34. Genome Med. 2010 Sep 07;2(9):65 - PubMed
  35. Cell. 2012 Mar 16;148(6):1293-307 - PubMed
  36. Nature. 2008 Oct 23;455(7216):1061-8 - PubMed
  37. Int J Cancer. 2012 Jun 15;130(12):2857-66 - PubMed
  38. Nat Biotechnol. 2012 Sep;30(9):842-8 - PubMed
  39. N Engl J Med. 2011 Jan 27;364(4):340-50 - PubMed
  40. Ann Oncol. 2014 Mar;25(3):552-63 - PubMed
  41. Bioinformatics. 2011 Mar 15;27(6):887-8 - PubMed
  42. Drug Discov Today. 2014 May;19(5):637-44 - PubMed
  43. Nature. 2012 Oct 4;490(7418):61-70 - PubMed
  44. Ann Oncol. 2013 Oct;24(10 ):2492-500 - PubMed
  45. Clin Cancer Res. 1999 Dec;5(12):4152-7 - PubMed
  46. Nat Rev Cancer. 2014 May;14(5):299-313 - PubMed
  47. Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60 - PubMed
  48. Endocr Relat Cancer. 2008 Mar;15(1):101-11 - PubMed
  49. J Clin Oncol. 2014 Jul 20;32(21):2255-69 - PubMed
  50. Cancer Chemother Pharmacol. 2014 May;73(5):911-7 - PubMed
  51. Clin Cancer Res. 2012 Apr 1;18(7):1855-62 - PubMed
  52. Nat Rev Drug Discov. 2010 Mar;9(3):203-14 - PubMed
  53. BMC Cancer. 2015 Apr 28;15:319 - PubMed
  54. Endocr Relat Cancer. 2012 Jun 18;19(4):R115-29 - PubMed
  55. Nat Genet. 2000 May;25(1):25-9 - PubMed
  56. Brief Bioinform. 2011 Jul;12(4):303-11 - PubMed
  57. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869-74 - PubMed
  58. PLoS One. 2013 Apr 30;8(4):e63038 - PubMed
  59. BMC Genomics. 2015;16 Suppl 7:S18 - PubMed
  60. N Engl J Med. 2012 Feb 9;366(6):489-91 - PubMed
  61. Nat Rev Cancer. 2004 Mar;4(3):177-83 - PubMed
  62. Nat Biotechnol. 2005 Mar;23(3):329-36 - PubMed

Publication Types