Display options
Share it on

IEEE Biomed Circuits Syst Conf. 2014 Oct;2014:216-219. doi: 10.1109/BioCAS.2014.6981701.

Redundant safety features in a high-channel-count retinal neurostimulator.

IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference

Shawn K Kelly, William F Ellersick, Ashwati Krishnan, Patrick Doyle, Douglas B Shire, John L Wyatt, Joseph F Rizzo

Affiliations

  1. Department of Veterans Affairs and Carnegie Mellon University, Pittsburgh, PA, USA, [email protected].
  2. Analog Circuit Works, Sudbury, MA, USA.
  3. Carnegie Mellon University, Pittsburgh, PA, USA.
  4. Harvest Automation, Billerica, MA, USA.
  5. Cornell University, Ithaca, NY, USA.
  6. Massachusetts Institute of Technology, Cambridge, MA, USA.
  7. Massachusetts Eye and Ear Infirmary, Boston, MA, USA.

PMID: 27231724 PMCID: PMC4878144 DOI: 10.1109/BioCAS.2014.6981701

Abstract

Safety features embedded in a 256-channel retinal prosthesis integrated circuit are presented. The biology of the retina and the electrochemistry of the electrode-tissue interface demand careful planning and design of the safety features of an implantable retinal stimulation device. We describe the internal limits and communication safety features of our ASIC, but we focus on monitoring and protection circuits for the electrode-tissue interface. Two independent voltage monitoring circuits for each channel measure the electrode polarization voltage at two different times in the biphasic stimulation cycle. The monitors ensure that the charged electrode stays within the electrochemical water window potentials, and that the discharged electrode is within a small window near the counter electrode potential. A switch to connect each electrode to the counter electrode between pulses protects against a wide range of device failures. Additionally, we describe work on an active feedback system to ensure that the electrode voltage is at zero.

Keywords: Biomedical engineering; biomedical electrodes; integrated circuit design; retinal implant; retinal prosthesis

References

  1. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:292-5 - PubMed
  2. Invest Ophthalmol Vis Sci. 2012 Nov 27;53(12):7802-12 - PubMed
  3. Annu Rev Biomed Eng. 2008;10:275-309 - PubMed
  4. Proc Biol Sci. 2011 May 22;278(1711):1489-97 - PubMed
  5. Acta Neurochir Suppl. 2007;97(Pt 2):487-93 - PubMed
  6. J Neurosci Methods. 2005 Feb 15;141(2):171-98 - PubMed
  7. J Neural Eng. 2013 Feb;10(1):011002 - PubMed
  8. Ophthalmology. 2011 Nov;118(11):2227-37 - PubMed
  9. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6729-32 - PubMed
  10. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3899-902 - PubMed
  11. Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5362-9 - PubMed
  12. IEEE Trans Biomed Eng. 2011 Nov;58(11):3197-205 - PubMed

Publication Types

Grant support