Display options
Share it on

Immun Ageing. 2016 May 01;13:15. doi: 10.1186/s12979-016-0072-1. eCollection 2016.

The insulin receptor substrate Chico regulates antibacterial immune function in Drosophila.

Immunity & ageing : I & A

Sarah McCormack, Shruti Yadav, Upasana Shokal, Eric Kenney, Dustin Cooper, Ioannis Eleftherianos

Affiliations

  1. Insect Infection and Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 800 Science and Engineering Hall, 22nd Street NW, Washington, D.C., 20052 USA.

PMID: 27134635 PMCID: PMC4852101 DOI: 10.1186/s12979-016-0072-1

Abstract

BACKGROUND: Molecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms. In the fruit fly Drosophila melanogaster, inhibition of the insulin/insulin-like growth factor signaling pathway prolongs lifespan, and mutations in the insulin receptor substrate Chico extend the survival of mutant flies against certain bacterial pathogens. Here we investigated the immune phenotypes, immune signaling activation and immune function of chico mutant adult flies against the virulent insect pathogen Photorhabdus luminescens as well as to non-pathogenic Escherichia coli bacteria.

RESULTS: We found that D. melanogaster chico loss-of-function mutant flies were equally able to survive infection by P. luminescens or E. coli compared to their background controls, but they contained fewer numbers of bacterial cells at most time-points after the infection. Analysis of immune signaling pathway activation in flies infected with the pathogenic or the non-pathogenic bacteria showed reduced transcript levels of antimicrobial peptide genes in the chico mutants than in controls. Evaluation of immune function in infected flies revealed increased phenoloxidase activity and melanization response to P. luminescens and E. coli together with reduced phagocytosis of bacteria in the chico mutants. Changes in the antibacterial immune function in the chico mutants was not due to altered metabolic activity.

CONCLUSIONS: Our results indicate a novel role for chico in the regulation of the antibacterial immune function in D. melanogaster. Similar studies will further contribute to a better understanding of the interconnection between ageing and immunity and lead to the identification and characterization of the molecular host components that modulate both important biological processes.

Keywords: Ageing; Chico; Drosophila melanogaster; Infection; Innate immunity; Insect pathogen; Long-lived mutant; Photorhabdus

References

  1. Genome Biol. 2007;8(7):R132 - PubMed
  2. Dev Comp Immunol. 2014 Jan;42(1):25-35 - PubMed
  3. FEMS Microbiol Rev. 2003 Jan;26(5):433-56 - PubMed
  4. Cell. 1999 Jun 25;97(7):865-75 - PubMed
  5. J Intern Med. 2008 Feb;263(2):179-91 - PubMed
  6. Annu Rev Microbiol. 2009;63:557-74 - PubMed
  7. Infect Immun. 2014 Oct;82(10):4169-81 - PubMed
  8. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10821-6 - PubMed
  9. Biotechniques. 2002 Apr;32(4):815-6, 818, 820, 822-3 - PubMed
  10. BMC Genomics. 2009 Jul 07;10:302 - PubMed
  11. Methods. 2014 Jun 15;68(1):105-15 - PubMed
  12. Immun Ageing. 2009 Sep 08;6:12 - PubMed
  13. Nat Cell Biol. 2009 May;11(5):521-6 - PubMed
  14. Annu Rev Immunol. 2007;25:697-743 - PubMed
  15. J Immunol Methods. 2009 Mar 15;342(1-2):71-7 - PubMed
  16. Science. 2012 Feb 24;335(6071):936-41 - PubMed
  17. Int Rev Immunol. 2011 Feb;30(1):16-34 - PubMed
  18. Toxins (Basel). 2010 Jun;2(6):1250-64 - PubMed
  19. FEBS J. 2015 Apr;282(8):1368-82 - PubMed
  20. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2419-24 - PubMed
  21. FEMS Microbiol Lett. 2009 Apr;293(2):170-6 - PubMed
  22. Science. 2001 Apr 6;292(5514):104-6 - PubMed
  23. Nat Rev Immunol. 2009 Jan;9(1):57-62 - PubMed
  24. Am J Physiol Endocrinol Metab. 2003 Nov;285(5):E1064-71 - PubMed
  25. Mol Immunol. 2008 Feb;45(3):810-7 - PubMed
  26. Fly (Austin). 2009 Jan-Mar;3(1):29-38 - PubMed
  27. Mol Cell Biol. 2007 Jun;27(12):4578-88 - PubMed
  28. Commun Integr Biol. 2010 Sep;3(5):409-14 - PubMed
  29. Open Biol. 2012 May;2(5):120075 - PubMed
  30. Nat Rev Immunol. 2008 Nov;8(11):889-95 - PubMed
  31. EMBO Rep. 2000 Oct;1(4):353-8 - PubMed
  32. PeerJ. 2013 Feb 12;1:e15 - PubMed
  33. Aging Cell. 2005 Apr;4(2):103-8 - PubMed
  34. Curr Biol. 2000 Jun 29;10(13):781-4 - PubMed
  35. Annu Rev Entomol. 2010;55:207-25 - PubMed
  36. Int J Mol Sci. 2012;13(8):9826-44 - PubMed
  37. J Insect Physiol. 2013 Feb;59(2):179-85 - PubMed
  38. Fly (Austin). 2009 Jan-Mar;3(1):105-11 - PubMed
  39. Transpl Int. 2009 Nov;22(11):1041-50 - PubMed
  40. PLoS Biol. 2009 Jul;7(7):e1000150 - PubMed
  41. EMBO J. 1990 Jan;9(1):217-24 - PubMed
  42. Annu Rev Nutr. 2001;21:23-46 - PubMed
  43. Methods. 2014 Jun 15;68(1):116-28 - PubMed
  44. Cell Metab. 2010 May 5;11(5):427-37 - PubMed
  45. Nature. 2013 Mar 28;495(7442):520-3 - PubMed
  46. Nat Biotechnol. 2003 Nov;21(11):1307-13 - PubMed
  47. J Innate Immun. 2011;3(1):28-33 - PubMed
  48. Nat Rev Immunol. 2007 Nov;7(11):862-74 - PubMed
  49. Dev Comp Immunol. 2014 Jan;42(1):16-24 - PubMed
  50. Trends Microbiol. 2010 Dec;18(12):552-60 - PubMed

Publication Types