Display options
Share it on

Plants (Basel). 2015 Jul 13;4(3):412-48. doi: 10.3390/plants4030412.

NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops.

Plants (Basel, Switzerland)

Dagmara Podzimska-Sroka, Charlotte O'Shea, Per L Gregersen, Karen Skriver

Affiliations

  1. Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark. [email protected].
  2. Department of Biology, University of Copenhagen, 5 Ole Maaloesvej, Copenhagen DK-2200, Denmark. [email protected].
  3. Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark. [email protected].
  4. Department of Biology, University of Copenhagen, 5 Ole Maaloesvej, Copenhagen DK-2200, Denmark. [email protected].

PMID: 27135336 PMCID: PMC4844398 DOI: 10.3390/plants4030412

Abstract

Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.

Keywords: NAC transcription factor; abiotic stress; crop breeding; domain structure; gene regulatory network; senescence

References

  1. Plant Sci. 2014 Oct;227:76-83 - PubMed
  2. Plant Cell Physiol. 2013 Oct;54(10):1660-72 - PubMed
  3. Plant Biotechnol J. 2007 Jan;5(1):192-206 - PubMed
  4. J Exp Bot. 2005 Apr;56(414):1117-28 - PubMed
  5. C R Biol. 2010 Apr;333(4):382-91 - PubMed
  6. Plant Physiol. 1997 Feb;113(2):313-319 - PubMed
  7. Trends Plant Sci. 2012 Jun;17(6):369-81 - PubMed
  8. Planta. 2010 Jul;232(2):337-52 - PubMed
  9. Plant Cell. 2012 Feb;24(2):482-506 - PubMed
  10. Elife. 2013 Jun 11;2:e00675 - PubMed
  11. Science. 2009 Feb 20;323(5917):1053-7 - PubMed
  12. J Plant Physiol. 2010 Apr 15;167(6):497-501 - PubMed
  13. Plant J. 2008 Jan;53(2):264-74 - PubMed
  14. Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:37-49 - PubMed
  15. Plant J. 2012 Jun;70(5):831-44 - PubMed
  16. J Exp Bot. 2000 Feb;51 Spec No:329-37 - PubMed
  17. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):10013-8 - PubMed
  18. Plant J. 2004 Aug;39(4):612-28 - PubMed
  19. Planta. 2014 Feb;239(2):313-24 - PubMed
  20. EMBO Rep. 2004 Mar;5(3):297-303 - PubMed
  21. Front Plant Sci. 2015 Jan 29;6:20 - PubMed
  22. J Exp Bot. 2006;57(11):2785-94 - PubMed
  23. Plant Physiol. 1990 May;93(1):33-9 - PubMed
  24. Plant J. 2005 May;42(4):567-85 - PubMed
  25. Plant Cell. 2002 Jun;14(6):1377-89 - PubMed
  26. Curr Opin Struct Biol. 2002 Feb;12(1):54-60 - PubMed
  27. Plant Cell. 2009 Apr;21(4):1109-28 - PubMed
  28. Plant J. 2006 May;46(4):601-12 - PubMed
  29. Plant J. 2010 Apr;62(2):250-64 - PubMed
  30. J Exp Bot. 2014 Jul;65(14):4023-36 - PubMed
  31. J Exp Bot. 2005 Nov;56(421):2915-23 - PubMed
  32. Plant J. 2006 Nov;48(4):535-47 - PubMed
  33. J Exp Bot. 2002 May;53(372):1305-19 - PubMed
  34. J Exp Bot. 2014 Jul;65(14):3963-73 - PubMed
  35. Ann Bot. 2010 Jun;105(7):1159-69 - PubMed
  36. BMC Plant Biol. 2013 Mar 03;13:35 - PubMed
  37. Mol Plant. 2011 Mar;4(2):346-60 - PubMed
  38. Annu Rev Plant Biol. 2007;58:115-36 - PubMed
  39. Cell Res. 2008 Jul;18(7):756-67 - PubMed
  40. Trends Plant Sci. 2000 Jul;5(7):278-82 - PubMed
  41. Plant Mol Biol. 2013 Aug;82(6):603-22 - PubMed
  42. Plant Biol (Stuttg). 2015 Jul;17(4):904-13 - PubMed
  43. FEMS Microbiol Lett. 2008 Feb;279(1):1-7 - PubMed
  44. Cell Res. 2009 Nov;19(11):1279-90 - PubMed
  45. J Exp Bot. 2003 Feb;54(383):801-12 - PubMed
  46. J Biol Chem. 2011 Oct 14;286(41):35418-29 - PubMed
  47. Plant Mol Biol. 2013 Aug;82(6):547-61 - PubMed
  48. J Exp Bot. 2004 Dec;55(408):2607-16 - PubMed
  49. Plant Cell. 1999 Jun;11(6):1073-80 - PubMed
  50. Plant J. 2008 Feb;53(3):425-36 - PubMed
  51. Plant Mol Biol. 2006 Mar;60(5):759-72 - PubMed
  52. Plant Physiol. 2006 Jun;141(2):776-92 - PubMed
  53. Science. 1999 Jun 25;284(5423):2148-52 - PubMed
  54. Protoplasma. 2012 Jul;249(3):469-81 - PubMed
  55. Trends Plant Sci. 2012 Nov;17(11):625-32 - PubMed
  56. Plant J. 2002 Oct;32(1):51-63 - PubMed
  57. Plant J. 2009 Oct;60(2):268-79 - PubMed
  58. Plant Mol Biol. 2013 Dec;83(6):577-90 - PubMed
  59. Cell. 1997 Jun 27;89(7):1133-44 - PubMed
  60. Plant J. 1997 Sep;12(3):527-35 - PubMed
  61. FEBS Open Bio. 2013 Jul 29;3:321-7 - PubMed
  62. Plant Signal Behav. 2010 Jul;5(7):907-10 - PubMed
  63. Plant Cell. 2010 Apr;22(4):1249-63 - PubMed
  64. Plant Cell. 2011 Mar;23(3):873-94 - PubMed
  65. Plant J. 2013 Jul;75(1):26-39 - PubMed
  66. J Exp Bot. 2014 Jul;65(14):3975-92 - PubMed
  67. PLoS One. 2014 Dec 05;9(12):e114313 - PubMed
  68. Plant Physiol. 2015 Jul;168(3):1122-39 - PubMed
  69. Plant Physiol. 2012 Feb;158(2):961-9 - PubMed
  70. Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:63-75 - PubMed
  71. Plant Cell. 2012 Sep;24(9):3530-57 - PubMed
  72. New Phytol. 2007;175(2):201-14 - PubMed
  73. Biochem J. 2010 Feb 09;426(2):183-96 - PubMed
  74. Phytochemistry. 2015 Jul;115:112-20 - PubMed
  75. Plant Mol Biol. 1999 Apr;39(6):1189-96 - PubMed
  76. Plant J. 2009 Jul;59(2):316-28 - PubMed
  77. J Exp Bot. 2015 Aug;66(15):4669-82 - PubMed
  78. J Mol Model. 2014 Mar;20(3):2117 - PubMed
  79. Plant Physiol. 2009 Sep;151(1):180-98 - PubMed
  80. J Exp Bot. 2010 Jun;61(11):3137-49 - PubMed
  81. Plant Signal Behav. 2010 Jun;5(6):733-5 - PubMed
  82. Trends Plant Sci. 2003 Jun;8(6):272-8 - PubMed
  83. Amino Acids. 2008 Nov;35(4):753-9 - PubMed
  84. Plant J. 2002 Apr;30(2):123-32 - PubMed
  85. J Exp Bot. 2012 Feb;63(3):1329-39 - PubMed
  86. BMC Res Notes. 2011 Aug 19;4:302 - PubMed
  87. Biochem J. 2012 Jun 15;444(3):395-404 - PubMed
  88. Chem Rev. 2014 Jul 9;114(13):6589-631 - PubMed
  89. J Exp Bot. 2014 Jul;65(14):4009-22 - PubMed
  90. Biochem Biophys Res Commun. 2014 Nov 7;454(1):78-83 - PubMed
  91. Plant Cell Physiol. 2011 May;52(5):933-45 - PubMed
  92. Cell Host Microbe. 2012 Jun 14;11(6):587-96 - PubMed
  93. Plant Mol Biol. 2013 Aug;82(6):623-33 - PubMed
  94. New Phytol. 2008;177(2):333-49 - PubMed
  95. Plant J. 2012 Feb;69(4):667-78 - PubMed
  96. Mol Plant Pathol. 2015 Feb;16(2):201-9 - PubMed
  97. Trends Plant Sci. 2005 Feb;10(2):79-87 - PubMed
  98. Theor Appl Genet. 2012 Dec;125(8):1677-86 - PubMed
  99. Plant Biotechnol J. 2003 Jan;1(1):3-22 - PubMed
  100. Plant Cell. 2004 Sep;16(9):2481-98 - PubMed
  101. Plant J. 2008 Oct;56(2):239-50 - PubMed
  102. EMBO J. 2001 Oct 1;20(19):5400-11 - PubMed
  103. Plant Mol Biol. 2012 Mar;78(4-5):515-24 - PubMed
  104. Science. 2006 Nov 24;314(5803):1298-301 - PubMed
  105. J Cell Sci. 2013 Nov 1;126(Pt 21):4823-33 - PubMed
  106. Plant Mol Biol. 2013 Jan;81(1-2):41-56 - PubMed
  107. BMC Plant Biol. 2014 Dec 19;14:368 - PubMed
  108. Biochem Biophys Res Commun. 2008 Apr 11;368(3):515-21 - PubMed
  109. Plant Cell. 2011 Jun;23(6):2155-68 - PubMed
  110. Curr Top Dev Biol. 2005;71:83-112 - PubMed
  111. IUBMB Life. 2014 Mar 23;:null - PubMed
  112. Biochim Biophys Acta. 2012 Feb;1819(2):97-103 - PubMed
  113. Plant J. 2008 Nov;56(3):432-44 - PubMed
  114. BMC Plant Biol. 2013 Sep 12;13:132 - PubMed
  115. BMC Plant Biol. 2010 Jul 15;10:145 - PubMed
  116. Physiol Plant. 2008 Apr;132(4):426-39 - PubMed
  117. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92 - PubMed
  118. Plant Cell. 1999 Oct;11(10):1897-910 - PubMed
  119. Bioinformatics. 2004 Sep 1;20(13):2138-9 - PubMed
  120. Plant Mol Biol. 2008 May;67(1-2):37-55 - PubMed
  121. J Proteome Res. 2007 Jun;6(6):2351-66 - PubMed
  122. J Exp Bot. 2008;59(11):3039-50 - PubMed
  123. Plant Cell Physiol. 2014 Mar;55(3):604-19 - PubMed
  124. Biochem J. 2012 Mar 15;442(3):573-81 - PubMed
  125. Plant Cell. 1998 Aug;10(8):1391-406 - PubMed
  126. Gene. 2013 Dec 1;531(2):220-34 - PubMed
  127. Plant Cell. 2008 Oct;20(10):2763-82 - PubMed
  128. J Exp Bot. 2014 Jul;65(14):3993-4008 - PubMed
  129. Plant Cell. 2014 Dec;26(12):4862-74 - PubMed
  130. EMBO Rep. 2013 Apr;14(4):382-8 - PubMed
  131. BMC Plant Biol. 2015 Feb 12;15:43 - PubMed
  132. J Exp Bot. 2010;61(1):261-73 - PubMed
  133. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  134. BMC Plant Biol. 2012 Nov 16;12:216 - PubMed
  135. Plant Cell. 2000 Oct;12(10):1849-62 - PubMed
  136. New Phytol. 2010 Jul;187(2):313-31 - PubMed
  137. J Exp Bot. 2014 Jul;65(14):3783-98 - PubMed
  138. BMC Genomics. 2011 Oct 07;12:492 - PubMed
  139. Plant Cell. 2011 May;23(5):1795-814 - PubMed
  140. J Exp Bot. 2013 Jan;64(2):569-83 - PubMed
  141. Biochem J. 2015 Jan 15;465(2):281-94 - PubMed
  142. Bioinformatics. 2007 Nov 1;23(21):2947-8 - PubMed
  143. Nucleic Acids Res. 2014 Jul;42(12):7681-93 - PubMed
  144. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2050-3 - PubMed

Publication Types