Display options
Share it on

Plants (Basel). 2014 Aug 07;3(3):324-47. doi: 10.3390/plants3030324.

Characterization of Four Bifunctional Plant IAM/PAM-Amidohydrolases Capable of Contributing to Auxin Biosynthesis.

Plants (Basel, Switzerland)

Beatriz Sánchez-Parra, Henning Frerigmann, Marta-Marina Pérez Alonso, Víctor Carrasco Loba, Ricarda Jost, Mathias Hentrich, Stephan Pollmann

Affiliations

  1. Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain. [email protected].
  2. Department of Plant Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany. [email protected].
  3. Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain. [email protected].
  4. Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain. [email protected].
  5. School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. [email protected].
  6. Department of Plant Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany. [email protected].
  7. Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain. [email protected].

PMID: 27135507 PMCID: PMC4844348 DOI: 10.3390/plants3030324

Abstract

Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.

Keywords: amidase; auxin; indole-3-acetamide; indole-3-acetic acid; phenyl-2-acetamide; phenyl-2-acetic acid

References

  1. J Biol Chem. 2000 May 12;275(19):14659-66 - PubMed
  2. Biol Chem. 2000 Aug;381(8):679-86 - PubMed
  3. EMBO Rep. 2000 Nov;1(5):411-5 - PubMed
  4. Appl Environ Microbiol. 2001 Aug;67(8):3739-45 - PubMed
  5. Genes Dev. 2002 Mar 15;16(6):753-63 - PubMed
  6. Physiol Plant. 2002 Jun;115(2):320-329 - PubMed
  7. Planta. 2002 Nov;216(1):44-56 - PubMed
  8. Planta. 2002 Nov;216(1):155-61 - PubMed
  9. Genes Dev. 2002 Dec 1;16(23):3100-12 - PubMed
  10. Phytochemistry. 2003 Feb;62(3):293-300 - PubMed
  11. Proc R Soc Lond B Biol Sci. 1960 May 17;152:231-54 - PubMed
  12. Chem Pharm Bull (Tokyo). 1963 Sep;11:1217-8 - PubMed
  13. J Plant Res. 2004 Jun;117(3):191-8 - PubMed
  14. Curr Microbiol. 2004 Apr;48(4):312-7 - PubMed
  15. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6522-6 - PubMed
  16. Plant Physiol. 1990 Aug;93(4):1654-8 - PubMed
  17. Plant Physiol. 1991 Oct;97(2):765-70 - PubMed
  18. Planta. 2006 Nov;224(6):1241-53 - PubMed
  19. Methods Mol Biol. 2006;323:449-57 - PubMed
  20. Plant Biol (Stuttg). 2006 May;8(3):326-33 - PubMed
  21. Genes Dev. 2006 Jul 1;20(13):1790-9 - PubMed
  22. Plant Physiol. 2007 Mar;143(3):1362-71 - PubMed
  23. Nat Protoc. 2007;2(4):953-71 - PubMed
  24. FEMS Microbiol Rev. 2007 Jul;31(4):425-48 - PubMed
  25. FEBS J. 2007 Jul;274(13):3440-51 - PubMed
  26. Plant J. 2007 Oct;52(1):53-68 - PubMed
  27. FEBS Lett. 2009 Jan 22;583(2):487-92 - PubMed
  28. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5430-5 - PubMed
  29. FEBS Lett. 2009 Jun 18;583(12):1895-900 - PubMed
  30. Phytochemistry. 2009 Oct-Nov;70(15-16):1680-6 - PubMed
  31. Plant Physiol. 2010 May;153(1):306-18 - PubMed
  32. Eur J Cell Biol. 2010 Dec;89(12):895-905 - PubMed
  33. Plant Physiol. 2010 Dec;154(4):1957-65 - PubMed
  34. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18518-23 - PubMed
  35. Plant Cell. 2011 Nov;23(11):3961-73 - PubMed
  36. J Biol Chem. 2013 Jan 18;288(3):1448-57 - PubMed
  37. Physiol Plant. 2014 May;151(1):3-12 - PubMed
  38. Plant Cell Rep. 1992 Jul;11(7):323-8 - PubMed
  39. Planta. 1987 Dec;172(4):555-62 - PubMed
  40. Trends Plant Sci. 2014 Jan;19(1):44-51 - PubMed
  41. Evolution. 1985 Jul;39(4):783-791 - PubMed
  42. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  43. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 - PubMed
  44. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  45. Plant Physiol. 1967 Nov;42(11):1519-26 - PubMed
  46. Eur J Biochem. 1984 Jan 16;138(2):387-91 - PubMed

Publication Types