Display options
Share it on

Plants (Basel). 2014 Nov 12;3(4):513-25. doi: 10.3390/plants3040513.

Glycoside Hydrolase Activities in Cell Walls of Sclerenchyma Cells in the Inflorescence Stems of Arabidopsis thaliana Visualized in Situ.

Plants (Basel, Switzerland)

Alicja Banasiak, Farid M Ibatullin, Harry Brumer, Ewa J Mellerowicz

Affiliations

  1. Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland. [email protected].
  2. Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden. [email protected].
  3. Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia. [email protected].
  4. Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden. [email protected].
  5. Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z1, Canada. [email protected].
  6. Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z1, Canada. [email protected].
  7. Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umea Plant Science Centre, 90183 Umea, Sweden. [email protected].

PMID: 27135517 PMCID: PMC4844284 DOI: 10.3390/plants3040513

Abstract

Techniques for in situ localization of gene products provide indispensable information for understanding biological function. In the case of enzymes, biological function is directly related to activity, and therefore, knowledge of activity patterns is central to understanding the molecular controls of plant development. We have previously developed a novel type of fluorogenic substrate for revealing glycoside hydrolase activity in planta, based on resorufin β-glycosides Here, we explore a wider range of such substrates to visualize glycoside hydrolase activities in Arabidopsis inflorescence stems in real time, especially highlighting distinct distribution patterns of these activities in the secondary cell walls of sclerenchyma cells. The results demonstrate that β-1,4-glucosidase, β-1,4-glucanase and β-1,4-galactosidase activities accompany secondary wall deposition. In contrast, xyloglucanase activity follows a different pattern, with the highest signal observed in mature cells, concentrated in the middle lamella. These data further the understanding of the process of cell wall deposition and function in sclerenchymatic tissues of plants.

Keywords: cell wall; glycoside hydrolase activity; in situ activity; sclerenchyma; wood; xylem

References

  1. Plant Cell. 2001 Jul;13(7):1499-510 - PubMed
  2. J Exp Bot. 2007;58(10):2503-12 - PubMed
  3. Plant Physiol. 2009 Dec;151(4):1741-50 - PubMed
  4. Ann Bot. 2008 Nov;102(5):659-65 - PubMed
  5. Plant Physiol. 2006 Mar;140(3):946-62 - PubMed
  6. Plant Mol Biol. 2001 Sep;47(1-2):55-72 - PubMed
  7. Plant Physiol. 2013 Jan;161(1):440-54 - PubMed
  8. New Phytol. 2015 Jan;205(2):666-81 - PubMed
  9. Plant Physiol. 2011 Jul;156(3):1351-63 - PubMed
  10. J Biol Chem. 2013 May 31;288(22):15786-99 - PubMed
  11. Plant Cell. 2007 Jun;19(6):1947-63 - PubMed
  12. Plant Physiol. 2011 Jan;155(1):399-413 - PubMed
  13. Anal Biochem. 2007 Dec 15;371(2):146-53 - PubMed
  14. Carbohydr Res. 2015 Jan 30;402:56-66 - PubMed
  15. Plant Cell. 2002 Dec;14(12):3073-88 - PubMed
  16. Plant Physiol. 2014 Jun 19;165(4):1566-1574 - PubMed
  17. Plant Physiol. 2012 Mar;158(3):1146-57 - PubMed
  18. J Exp Bot. 2004 Sep;55(405):2029-39 - PubMed
  19. Proteomics. 2013 Mar;13(5):812-25 - PubMed
  20. BMC Evol Biol. 2010 Nov 05;10:341 - PubMed
  21. Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61 - PubMed
  22. Plant Biotechnol J. 2010 Apr;8(3):294-307 - PubMed
  23. J Exp Bot. 2013 Sep;64(12):3519-50 - PubMed
  24. Plant Physiol. 2010 Jun;153(2):456-66 - PubMed
  25. Planta. 2011 Apr;233(4):707-19 - PubMed
  26. Plant Cell. 2012 Nov;24(11):4731-47 - PubMed
  27. Plant Cell. 2011 Nov;23(11):4025-40 - PubMed
  28. Carbohydr Res. 1992 Feb 7;224:29-40 - PubMed
  29. Plant Cell Physiol. 2009 Jun;50(6):1099-115 - PubMed
  30. Plant Physiol. 2010 Nov;154(3):1105-15 - PubMed
  31. Plant Cell Physiol. 2007 Jun;48(6):843-55 - PubMed
  32. Mol Plant. 2009 Sep;2(5):893-903 - PubMed
  33. J Exp Bot. 2012 Jan;63(2):551-65 - PubMed

Publication Types