Display options
Share it on

Plants (Basel). 2013 Nov 27;2(4):726-49. doi: 10.3390/plants2040726.

The Clubroot Pathogen (Plasmodiophora brassicae) Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis.

Plants (Basel, Switzerland)

Linda Jahn, Stefanie Mucha, Sabine Bergmann, Cornelia Horn, Paul Staswick, Bianka Steffens, Johannes Siemens, Jutta Ludwig-Müller

Affiliations

  1. Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany. [email protected].
  2. Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany. [email protected].
  3. Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany. [email protected].
  4. Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany. [email protected].
  5. Department of Agronomy and Horticulture, University of Nebraska, 379 Keim, Lincoln, NE 68521 USA. [email protected].
  6. Botanisches Institut, Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany. [email protected].
  7. Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany. [email protected].
  8. Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany. [email protected].

PMID: 27137401 PMCID: PMC4844388 DOI: 10.3390/plants2040726

Abstract

The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

Keywords: ABP1; Arabidopsis thaliana; GH3 proteins; Plasmodiophora brassicae; TIR1; auxin homeostasis; auxin receptors; clubroot disease; potassium channel inhibitors; tetraethylammonium

References

  1. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11795-800 - PubMed
  2. Mol Plant Microbe Interact. 2006 May;19(5):480-94 - PubMed
  3. PLoS One. 2007 Aug 08;2(8):e718 - PubMed
  4. Development. 2004 Mar;131(5):1089-100 - PubMed
  5. New Phytol. 2005 Apr;166(1):241-50 - PubMed
  6. Plant J. 1994 Jan;5(1):55-68 - PubMed
  7. Plant J. 2004 Mar;37(6):815-27 - PubMed
  8. J Integr Plant Biol. 2012 Jul;54(7):471-85 - PubMed
  9. Nat Rev Mol Cell Biol. 2005 Jan;6(1):9-20 - PubMed
  10. Commun Agric Appl Biol Sci. 2006;71(3 Pt B):869-72 - PubMed
  11. Nature. 2005 May 26;435(7041):441-5 - PubMed
  12. Plant Cell. 2007 Jan;19(1):118-30 - PubMed
  13. Plant Mol Biol. 2002 Jun-Jul;49(3-4):373-85 - PubMed
  14. Plant Cell. 2004 Aug;16(8):2117-27 - PubMed
  15. Planta. 1999 May;208(3):409-19 - PubMed
  16. Plant Cell. 2012 Feb;24(2):762-77 - PubMed
  17. Curr Biol. 2011 Mar 22;21(6):520-5 - PubMed
  18. Mol Plant Pathol. 2010 Jul;11(4):545-62 - PubMed
  19. Nature. 2009 Jun 25;459(7250):1071-8 - PubMed
  20. Plant Cell. 2005 Jul;17 (7):1967-78 - PubMed
  21. Curr Opin Plant Biol. 2007 Oct;10(5):453-60 - PubMed
  22. Plant Physiol. 2000 Feb;122(2):369-78 - PubMed
  23. Genes Dev. 2008 Aug 15;22(16):2139-48 - PubMed
  24. Curr Biol. 2010 Oct 12;20(19):1697-706 - PubMed
  25. Plant Signal Behav. 2011 Jun;6(6):901-4 - PubMed
  26. Plant Physiol. 2007 Oct;145(2):450-64 - PubMed
  27. New Phytol. 2009 Jan;181(2):323-38 - PubMed
  28. Genes Dev. 2001 Apr 1;15(7):902-11 - PubMed
  29. Mol Plant Microbe Interact. 2006 Dec;19(12):1431-43 - PubMed
  30. J Exp Bot. 2011 Jun;62(10):3339-57 - PubMed
  31. Nature. 2007 Aug 9;448(7154):661-5 - PubMed
  32. J Exp Bot. 2011 Mar;62(6):1757-73 - PubMed
  33. Plant Cell. 2012 Jun;24(6):2515-27 - PubMed
  34. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22540-5 - PubMed
  35. Plant J. 2006 Jan;45(2):193-205 - PubMed
  36. J Biol Chem. 2007 Mar 30;282(13):10036-46 - PubMed
  37. Plant Biol (Stuttg). 2006 May;8(3):340-5 - PubMed
  38. Dev Cell. 2005 Jul;9(1):109-19 - PubMed
  39. Plant J. 2004 Nov;40(3):333-43 - PubMed
  40. Plant Biol (Stuttg). 2006 May;8(3):346-52 - PubMed
  41. Plant Cell. 2005 May;17(5):1360-75 - PubMed
  42. Plant Cell. 2009 Aug;21(8):2253-68 - PubMed
  43. Nature. 2010 Apr 8;464(7290):913-6 - PubMed
  44. Plant Biol (Stuttg). 2006 May;8(3):353-9 - PubMed
  45. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12186-91 - PubMed
  46. Plant Cell. 2005 Feb;17(2):616-27 - PubMed
  47. Mol Plant. 2011 Jul;4(4):635-40 - PubMed
  48. Trends Plant Sci. 2001 Sep;6(9):420-5 - PubMed

Publication Types