Display options
Share it on

Front Neurosci. 2016 May 03;10:168. doi: 10.3389/fnins.2016.00168. eCollection 2016.

DNA Methylation Profiling at Single-Base Resolution Reveals Gestational Folic Acid Supplementation Influences the Epigenome of Mouse Offspring Cerebellum.

Frontiers in neuroscience

Subit Barua, Salomon Kuizon, W Ted Brown, Mohammed A Junaid

Affiliations

  1. Departments of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities , Staten Island, NY, USA.
  2. Human Genetics, New York State Institute for Basic Research in Developmental Disabilities , Staten Island, NY, USA.

PMID: 27199632 PMCID: PMC4854024 DOI: 10.3389/fnins.2016.00168

Abstract

It is becoming increasingly more evident that lifestyle, environmental factors, and maternal nutrition during gestation can influence the epigenome of the developing fetus and thus modulate the physiological outcome. Variations in the intake of maternal nutrients affecting one-carbon metabolism may influence brain development and exert long-term effects on the health of the progeny. In this study, we investigated whether supplementation with high maternal folic acid during gestation alters DNA methylation and gene expression in the cerebellum of mouse offspring. We used reduced representation bisulfite sequencing to analyze the DNA methylation profile at the single-base resolution level. The genome-wide DNA methylation analysis revealed that supplementation with higher maternal folic acid resulted in distinct methylation patterns (P < 0.05) of CpG and non-CpG sites in the cerebellum of offspring. Such variations of methylation and gene expression in the cerebellum of offspring were highly sex-specific, including several genes of the neuronal pathways. These findings demonstrate that alterations in the level of maternal folic acid during gestation can influence methylation and gene expression in the cerebellum of offspring. Such changes in the offspring epigenome may alter neurodevelopment and influence the functional outcome of neurologic and psychiatric diseases.

Keywords: DNA methylation; brain development; cerebellum; folic acid; gestational development; psychiatric disease

References

  1. PLoS One. 2012;7(11):e47986 - PubMed
  2. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5237-42 - PubMed
  3. Eur J Neurosci. 2003 Oct;18(7):2002-10 - PubMed
  4. Nat Biotechnol. 2009 Apr;27(4):361-8 - PubMed
  5. J Biomed Sci. 2014 Aug 19;21:77 - PubMed
  6. Hum Mol Genet. 2006 Oct 15;15 Spec No 2:R138-50 - PubMed
  7. Cell Biochem Biophys. 2013 Jul;66(3):559-66 - PubMed
  8. Physiol Rev. 2008 Oct;88(4):1407-47 - PubMed
  9. Int J Dev Neurosci. 2002 Dec;20(8):627-39 - PubMed
  10. Front Genet. 2014 Aug 26;5:289 - PubMed
  11. Pediatr Endocrinol Rev. 2010 Dec;8(2):94-102 - PubMed
  12. Nutr Cancer. 2014;66(5):800-9 - PubMed
  13. Cell. 1999 Oct 29;99(3):247-57 - PubMed
  14. Epigenomics. 2015;7(1):85-102 - PubMed
  15. Epigenetics. 2008 Mar-Apr;3(2):97-106 - PubMed
  16. Int J Dev Neurosci. 2013 Oct;31(6):391-7 - PubMed
  17. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13734-8 - PubMed
  18. Brain. 2006 Feb;129(Pt 2):290-2 - PubMed
  19. PLoS One. 2014 Jul 09;9(7):e101674 - PubMed
  20. Biochem J. 2004 Mar 15;378(Pt 3):763-8 - PubMed
  21. Nature. 2010 Jul 8;466(7303):253-7 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):671-8 - PubMed
  23. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5557-62 - PubMed
  24. Behav Brain Res. 1991 Aug 29;44(2):113-28 - PubMed
  25. Mol Endocrinol. 2011 Dec;25(12):2157-68 - PubMed
  26. PLoS One. 2014 Nov 25;9(11):e113712 - PubMed
  27. Neuroscience. 2014 Sep 5;275:238-47 - PubMed
  28. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15424-9 - PubMed
  29. J Nutr. 2002 Aug;132(8 Suppl):2393S-2400S - PubMed
  30. Anat Rec (Hoboken). 2011 Oct;294(10):1646-52 - PubMed
  31. Immunometabolism. 2013 Mar;1:1-9 - PubMed
  32. Brain. 2007 Oct;130(Pt 10):2646-60 - PubMed
  33. Clin Epigenetics. 2014 Jan 02;6(1):1 - PubMed
  34. Genes Brain Behav. 2014 Apr;13(4):439-50 - PubMed
  35. Epigenetics. 2013 Jun;8(6):602-11 - PubMed
  36. Genome Res. 2011 May;21(5):688-96 - PubMed
  37. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3011-6 - PubMed
  38. Front Cell Neurosci. 2015 Jan 12;8:450 - PubMed
  39. PLoS Genet. 2008 Jun 27;4(6):e1000116 - PubMed
  40. Brain Res. 2010 Sep 24;1353:60-73 - PubMed
  41. Epigenetics. 2013 Mar;8(3):290-302 - PubMed
  42. Epigenomics. 2009 Oct;1(1):119-30 - PubMed
  43. Prog Brain Res. 2005;148:341-51 - PubMed
  44. Cell. 1992 Jun 12;69(6):915-26 - PubMed
  45. Epigenetics Chromatin. 2014 Feb 03;7(1):3 - PubMed
  46. Development. 1996 Oct;122(10):3195-205 - PubMed
  47. Am J Hum Genet. 2010 Mar 12;86(3):411-9 - PubMed
  48. Epidemiology. 2009 Nov;20(6):909-15 - PubMed
  49. Cell Mol Life Sci. 2014 Jan;71(2):271-85 - PubMed
  50. Birth Defects Res A Clin Mol Teratol. 2011 Oct;91(10):885-93 - PubMed
  51. J Mol Biol. 2001 Jun 22;309(5):1201-8 - PubMed
  52. Bipolar Disord. 2014 Dec;16(8):790-9 - PubMed
  53. Am J Clin Nutr. 2008 Mar;87(3):517-33 - PubMed
  54. Epigenetics. 2012 Mar;7(3):253-60 - PubMed
  55. Nat Genet. 2003 Mar;33 Suppl:245-54 - PubMed
  56. Am J Psychiatry. 2008 Dec;165(12):1594-603 - PubMed
  57. Schizophr Res. 2015 Sep;167(1-3):42-56 - PubMed
  58. Genes Dev. 2014 Apr 15;28(8):812-28 - PubMed
  59. J Neuropsychiatry Clin Neurosci. 2004 Summer;16(3):367-78 - PubMed
  60. Epigenetics. 2011 Jul;6(7):862-9 - PubMed

Publication Types