Display options
Share it on

Front Hum Neurosci. 2016 Apr 25;10:170. doi: 10.3389/fnhum.2016.00170. eCollection 2016.

Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task.

Frontiers in human neuroscience

Andreas Meinel, Sebastián Castaño-Candamil, Janine Reis, Michael Tangermann

Affiliations

  1. Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools, Department of Computer Science, Albert-Ludwigs-University Freiburg, Germany.
  2. Department of Neurology, Albert-Ludwigs-University Freiburg, Germany.

PMID: 27199701 PMCID: PMC4843706 DOI: 10.3389/fnhum.2016.00170

Abstract

We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios.

Keywords: EEG; hand motor rehabilitation; isometric force modulation; oscillatory subspace; single-trial performance prediction; spatial filtering; trial-by-trial variability; visuomotor integration

References

  1. Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21 - PubMed
  2. J Neurosci. 2006 Apr 5;26(14):3697-712 - PubMed
  3. J Neurosci Methods. 2008 Jan 15;167(1):82-90 - PubMed
  4. IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):725-36 - PubMed
  5. IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6 - PubMed
  6. Brain Topogr. 2015 Nov;28(6):852-64 - PubMed
  7. Lancet. 2011 May 14;377(9778):1693-702 - PubMed
  8. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1590-5 - PubMed
  9. Front Syst Neurosci. 2014 Jun 26;8:119 - PubMed
  10. Nat Rev Neurosci. 2008 Apr;9(4):292-303 - PubMed
  11. Ann Neurol. 2013 Jul;74(1):100-8 - PubMed
  12. J Neurosci. 2014 Sep 3;34(36):12071-80 - PubMed
  13. Neuron. 2010 Apr 29;66(2):198-204 - PubMed
  14. J Neurosci. 2008 Feb 20;28(8):1816-23 - PubMed
  15. J Neuroeng Rehabil. 2008 Nov 07;5:25 - PubMed
  16. Neurosci Biobehav Rev. 2015 Oct;57:132-41 - PubMed
  17. J Neurosci. 2008 Jan 23;28(4):1000-8 - PubMed
  18. J Neurosci Methods. 2012 Aug 15;209(2):299-307 - PubMed
  19. Sci Rep. 2015 Dec 07;5:17659 - PubMed
  20. Cochrane Database Syst Rev. 2010 Apr 14;(4):CD006432 - PubMed
  21. Biol Psychol. 2012 Jan;89(1):80-6 - PubMed
  22. J Cogn Neurosci. 2009 Dec;21(12):2407-19 - PubMed
  23. Neuroimage. 2009 Oct 1;47(4):1691-700 - PubMed
  24. J Neural Eng. 2014 Jun;11(3):035013 - PubMed
  25. Neuroimage. 2010 Jul 1;51(3):1162-7 - PubMed
  26. PLoS One. 2013;8(3):e60060 - PubMed
  27. PLoS One. 2008 Aug 13;3(8):e2967 - PubMed
  28. Ann Neurol. 2015 May;77(5):851-65 - PubMed
  29. J Neurosci. 2009 Jun 17;29(24):7869-76 - PubMed
  30. Neurologist. 2002 Nov;8(6):325-38 - PubMed
  31. J Neurosci. 2015 Jun 17;35(24):9106-21 - PubMed
  32. J Neurophysiol. 2012 Nov;108(9):2352-62 - PubMed
  33. IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):653-62 - PubMed
  34. Neuroimage. 2014 Feb 1;86:111-22 - PubMed
  35. Front Psychol. 2011 May 27;2:100 - PubMed
  36. Neuroimage. 2007 Aug 15;37(2):539-50 - PubMed
  37. J Neurosci Methods. 2008 Jan 15;167(1):105-14 - PubMed
  38. J Neural Eng. 2013 Oct;10(5):056007 - PubMed
  39. Neuroimage. 2011 May 15;56(2):387-99 - PubMed
  40. J Neuroeng Rehabil. 2009 Jan 20;6:1 - PubMed
  41. Lancet Neurol. 2004 Sep;3(9):528-36 - PubMed
  42. PLoS One. 2013 May 17;8(5):e64332 - PubMed
  43. Hum Brain Mapp. 2005 Jan;24(1):50-8 - PubMed
  44. Neurosci Res. 2008 Apr;60(4):389-96 - PubMed
  45. Neurotherapeutics. 2011 Jul;8(3):319-29 - PubMed
  46. Front Neurosci. 2010 Sep 07;4:null - PubMed
  47. Neuroimage. 2015 Sep;118:598-612 - PubMed
  48. Cochrane Database Syst Rev. 2007 Oct 17;(4):CD006073 - PubMed
  49. Front Hum Neurosci. 2013 Jun 06;7:225 - PubMed
  50. Clin Neurophysiol. 2009 Oct;120(10):1859-65 - PubMed
  51. Neuroimage. 2007 Oct 1;37(4):1465-73 - PubMed
  52. J Neural Eng. 2014 Jun;11(3):035005 - PubMed
  53. Exp Brain Res. 2009 Feb;193(1):69-83 - PubMed
  54. Nat Neurosci. 2014 Feb;17(2):312-21 - PubMed
  55. Clin Neurophysiol. 2010 Nov;121(11):1952-61 - PubMed
  56. Brain Topogr. 2010 Jun;23(2):186-93 - PubMed
  57. Neuroimage. 2014 Feb 15;87:96-110 - PubMed
  58. J Neuroeng Rehabil. 2014 Mar 04;11:24 - PubMed
  59. Neuroimage. 2014 Apr 1;89:235-43 - PubMed
  60. Front Neurosci. 2014 Aug 01;8:222 - PubMed
  61. Conf Proc IEEE Eng Med Biol Soc. 2015 ;2015 :5159-62 - PubMed

Publication Types